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Quantum imaging promises increased imaging performance over classical protocols. However, there

are a number of aspects of quantum imaging that are not well understood. In particular, it has been

unknown so far how to compare classical and quantum imaging procedures. Here, we consider classical

and quantum imaging in a single theoretical framework and present general fundamental limits on the

resolution and the deposition rate for classical and quantum imaging. The resolution can be estimated

from the image itself. We present a utility function that allows us to compare imaging protocols in a wide

range of applications.
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Imaging is an important technological tool in many dis-
ciplines including astronomy, biomedical research, nano-
technology, and basic research. The wave nature of light
limits the resolution and contrast that can be achieved in
classical imaging techniques. On the other hand, quantum
entanglement may offer some improvement over these clas-
sical limits, leading to the subject of quantum imaging. The
best-known quantum imaging protocols are two-photon
microscopy [1–3], two-photon spectroscopy [4], quantum
holography [5], quantum lithography [6], and quantum illu-
mination [7]. The subject of quantum imaging is closely
related to quantummetrology [8], which is quite well under-
stood [9,10]. However, there are some important differences.
If we restrict our discussion to quantum optics, quantum
metrology is first and foremost concerned with photon
statistics, which is governed almost entirely by transforma-
tion of the mode operators of the quantum field. Quantum
imaging, on the other hand, is intimately related to both
operator transformation and the specific form of the (classi-
cal) mode functions that encode the spatial properties of the
field. This has made it difficult to identify the essential
quantum mechanical behavior in imaging protocols.

There are two reasons why it is important to understand
the precise distinction between classical and quantum
imaging. First, understanding the precise distinction can
help identify new methods for improved imaging, poten-
tially leading to new technologies. Second, it may reveal a
fundamental aspect of physics that has hitherto remained
elusive: what (if anything) makes quantum optics more
powerful for imaging than classical optics? The obvious
answer to this question—quantum entanglement—has al-
ready been proved false to some extent [11]. While entan-
glement is likely necessary for an improved imaging
procedure, it is certainly not sufficient. This is reminis-
cent of quantum computing, where it was shown that
entanglement is necessary but not sufficient for obtaining
the promised exponential speeding-up over classical
computing [12].

Here, we develop a theoretical framework that allows us
to study classical and quantum imaging in a unified fash-
ion, carrying over tools and techniques from the mathe-
matical theory of metrology to prove fundamental limits.
This is fundamentally and conceptually different from
studying the parameter estimation systems that use light
as the probing mechanism (e.g., Ref. [13]). Our methodol-
ogy is based on the statistical distance between two proba-
bility distributions that characterize two images. We find
that the distinguishability of probability distributions pro-
vides a natural definition of the imaging resolution in terms
of a Cramér-Rao bound. We apply this bound to several
imaging procedures and show that it gives the desired
result. We define a utility function that provides a general
metric for imaging procedures in practical applications.
The most general imaging procedure is shown in Fig. 1.

Light emitted or reflected by an object O is optically
processed by an imaging system L and recorded by a
substrate S. Typically, the substrate has a granular spatial
structure, so that we can break it up into N systems,
indicated by their position x. If the width of such a ‘‘pixel’’
is ‘, then the total length of the substrate is L ¼ N‘.
Moreover, we assume that the intensity is granular (which
is consistent with the use of photons at the fundamental
level), and the values of the image intensity at a pixel are

FIG. 1. General imaging procedure. The state of light �ð�Þ
contains information � about the object O and the imaging
system L. The substrate S acts as a measurement of �ð�Þ and
is generally described by a POVM. This model includes multi-
photon quantum imaging procedures.
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given by ik. The average recorded intensity at pixel x is
then given by IðxÞ ¼ P

kikpkðxÞ, where pkðxÞ is the proba-
bility of measuring ik at pixel x. In quantum mechanics,

this is given by the Born rule pkðxÞ ¼ Tr½�ÊkðxÞ�, with �
the quantum state of light incident on the substrate and

ÊkðxÞ the measurement operator for outcome ik at x. The

set of ÊkðxÞ forms a positive operator-valued measure
(POVM) for each pixel x. The image IðxÞ may be related
in a simple manner to the intensity of the light that hits the
substrate, or it may have a more complicated relationship
involving multiphoton absorption, etc. For monochromatic
images, IðxÞwill be a single-valued function, indicating the
brightness of the image at x. Note that pixels do not need to
be placed side by side (e.g., Ref. [14]). For simplicity, we
will limit our discussion to one-dimensional substrates in
the remainder of this Letter; however, all our results gen-
eralize easily.

We construct the image observable, ÎðxÞ, that is mea-

sured by the substrate. We define IðxÞ ¼ hÎðxÞi such that

IðxÞ ¼ P
kikTr½�ÊkðxÞ� � Tr½�ÎðxÞ�, and we therefore find

that ÎðxÞ ¼ P
kikÊkðxÞ. In the simplest case where the

substrate records the number of photons k, the POVM

elements are ÊkðxÞ ¼ jkixhkj and ik ¼ k. More compli-
cated POVMs can incorporate, for example, photon losses,
a saturation point, bleeding from adjacent points, or multi-
photon interference. In typical imaging protocols, the mea-
surement at each pixel is diagonal in the Fock basis, and the
properties of the substrate are characterized by the POVM

Ê kðxÞ ¼
X
~n

qkðxj ~nÞj ~nih ~nj; (1)

where qkðxj ~nÞ is the conditional probability of finding the
measurement outcome k at pixel x, given the photon num-
ber distribution ~n ¼ ðn1; . . . ; nNÞ and P

kqkðxj ~nÞ ¼ 1. We
identify the recorded image IðxÞ with an unnormalized
probability distribution. After normalization, we define

PrðxÞ � IðxÞ
I0

; (2)

where I0 ¼
P

xIðxÞ is the image normalization.
In imaging, we are often interested in distinguishing two

possibilities parametrized by a continuous number �, the
position of a light source. Hence, the probability distribu-
tion Prðxj�Þ, and therefore the image, will depend on �. We
now have two probability distributions, Prðxj� ¼ 0Þ and
Prðxj�Þ. Distinguishing two images is then possible if we
can distinguish the two probability distributions. One
method to achieve this is to define the infinitesimal statis-
tical distance [15]

ds2 ¼ X
x

½Prðxjd�Þ � Prðxj0Þ�2
Prðxj0Þ ; (3)

which can be formally integrated to a function sð�Þ. We note,
however, that in principle any method for distinguishing

probability distributions can be used. Using a Taylor ex-
pansion of sð�Þ up to first order in ��, we can write

�s � sð��Þ � sð0Þ ¼ ds

d�

���������¼0
��: (4)

The two probability distributions are distinguishable when
ð�sÞ2 � 1, which we can rewrite as

ð�sÞ2 ¼ Fð0Þð��Þ2 � 1 with Fð�Þ ¼
�
ds

d�

�
2
: (5)

The quantity Fð�Þ is known as the Fisher information [16]

Fð�Þ ¼ X
x

1

Prðxj�Þ
�
dPrðxj�Þ

d�

�
2
; (6)

and is a measure of the information we can extract about �,
given the probability distribution Prðxj�Þ. When we use the
form of Prðxj�Þ in Eq. (2), we find

Fð�Þ ¼ X
x

½@�hÎðxÞi�2
I0hÎðxÞi

� ð@�I0Þ2
I20

; (7)

where @� � @=@�. If I0 is independent of �, the last term
vanishes. The Fisher information is therefore calculated
directly from the recorded image, without the need for

modeling the POVM fÊkðxÞg of a complicated substrate.
We can translate the distinguishability criterion in

Eq. (5) using F0 � Fð0Þ into a resolution limit for the
parameter � and find that

�� � 1ffiffiffiffiffiffi
F0

p : (8)

This is a single-shot Cramér-Rao bound for the imaging
resolution of �, which is achievable in the limit of a
well-exposed image. This result is readily extended to
multiple parameters using well-known techniques [16].
There is a key difference between the theory of imaging

presented here and quantum metrology [17]. In the latter,
the Cramér-Rao inequality gives a bound on the mean
square error in the parameter � as a function of the number
of independently repeated measurements [13]. By contrast,
in quantum imaging, the Cramér-Rao bound is based on the
full probability distribution Prðxj�Þ, and hence assumes
that the image is sufficiently well-exposed such that
Eq. (2) holds. Faint images can be modeled phenomeno-
logically by adding a (uniform) probability distribution to
Eq. (2).
Next, we demonstrate that this technique gives the cor-

rect results for some known imaging procedures. First, we
consider the double slit experiment, in which the image is
the interference pattern in the far field [18]. We parame-
trize the slit separation by � and have the numerical
aperture A capture a fraction of the interference pattern.
To calculate the Fisher information, we use the full form of
Eq. (7), since I0 depends on �. The resolution criterion is
that the uncertainty �� is smaller than the estimate �. From
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this we derive that two slits are resolved when �2Fð�Þ � 1.
We calculate the resolution limit to be �min � 0:369�=A.
When we compare this to the Abbe limit �min � 0:5�=A,
we find a slightly better resolution. This is because the
Abbe limit is a conservative estimate that does not take into
account the extra information about � in the slopes of the
intensity pattern. The Fisher information is very sensitive
to these slopes. When we calculate the resolution for the
third-order photon interference slit imaging experiment by
Oppel et al. [14], we find a factor 2 improvement, as
expected.

Second, we consider the classical and quantum photoli-
thography [6] shown in Fig. 2. In the classical regime, the
input state can be modeled by the single photon superpo-

sition state jc i ¼ ðj1; 0iab þ ei�j0; 1iabÞ=
ffiffiffi
2

p
, where � ¼

�‘�x shifts the pattern along the substrate (� ¼ 2�=� is
the wave vector). We give the POVM of a general
M-photon absorbtion substrate including a detection effi-
ciency �. The conditional probabilities in Eq. (1) are
q0ðxjnxÞ ¼ 1 for nx <M and q0ðxjnxÞ ¼ ð1� �Þnx for
nx � M; q1ðxjnxÞ ¼ 1� q0ðxjnxÞ. The Fisher information
for M ¼ 1 is then calculated as

Fð�Þ ¼ 2

N

X
x

sin2
�
�lxþ �

2

�
� 2: (9)

If the substrate is much larger than the wavelength of the
light, then F0 ’ 1 [see Fig. 3(a)] and the Cramér-Rao
bound is �� � 1, or ‘�x � �=2�. This imaging resolution
is slightly better than the Rayleigh criterion ‘�x � �=4
due to the slope sensitivity of the Fisher information.

ForM-photon quantum lithography, the Fisher informa-
tion is given by

Fð�Þ ¼ 2M2

N

X
x

sin2
�
M�lxþM�

2

�
: (10)

When �lN � 1, the Fisher information is F0 ’ M2, yield-
ing �� � M�1. The imaging resolution ‘�x � �=2�M is
slightly better than ‘�x � �=4M, found by Boto et al. [6].
In both the classical and quantum cases, the resolution is
independent of the efficiency �.

Finally, we consider imaging the position of a dot of
coherent light with a Gaussian intensity profile on a one-
dimensional substrate. We include a saturation limit of
the substrate and the pixel bleeding due to interactions
between adjacent pixels. For simplicity, the state of light

on the substrate is given by j�i ¼ N
N
x¼1 j�xix; with j�xix a

coherent state of amplitude�x ¼ �0 exp½�ðx� x0Þ2=2	2�
at pixel x. There is no coherence between adjacent pixels.
Assuming 	 � L and x0 towards the center of the sub-
strate (so @�I0 � 0), the Fisher information for perfect
photodetection at each pixel becomes

Fð�Þ ¼ 4
X
x

j�2
xj

I0

ðx� �Þ
	2

: (11)

The Fisher information is shown as a function of the
standard deviation 	 in Fig. 3(b). When 	 falls below
one pixel width, the Fisher information drops rapidly to
zero. This is expected, since below one pixel width, we are
no longer able to detect a correspondingly small shift in �.
Above one pixel width, the graph follows the form of

F ¼ 2=	2, which gives the resolution �� � 	=
ffiffiffi
2

p
.

Taking into account the saturation limit S would lead to
conditional probabilities in the POVM, given by

qkðxj ~nÞ ¼
8<
:
�k;nx if k < SP1

j¼0 �nx;Sþj if k ¼ S:
(12)

For the displacement of a Gaussian dot, this gives the
Fisher information shown in Fig. 3(c). Due to a uniform
noise floor, F0 rises sharply for a small�0 and falls away at
the saturation point. The noise is numerically necessary to
avoid near singularities. The saturation truncates relevant

FIG. 2. Optical lithography. Two nearly counterpropagating
beams a and b produce an interference pattern on the substrate.
The phase shift � causes a shift in the image.

FIG. 3 (color online). Qualitative behavior of the Fisher infor-
mation: (a) F0 in Eq. (9) as a function of the number of pixels N
tends to 1 for large N; (b) F0 for the displacement of a Gaussian
dot with width 	 (in units of pixel size ‘). The vertical dotted
line indicates where 	 ¼ ‘, the size of one pixel; (c) F0 for a
Gaussian dot as a function of the peak amplitude �0 (in arbitrary
units). The vertical dotted line indicates the saturation point at
�0 ¼ 5, and 	 ¼ 70‘. The saturation point has only a small
effect, since F0 is sensitive mostly to intensity slopes; (d) the
ratio of the Fisher information with and without bleeding Fb=F0

as a function of the average bleeding distance b (with 	 ¼ 40‘
and �0 ¼ 70).
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statistical information, but the main contribution to F0

comes from the steep ascent regions of the Gaussian, rather
than the crown. Therefore, the overall impact on the Fisher
information is relatively small for this particular imaging
process. In other situations, the saturation limit can have
severe implications for the resolution.

When there exists an interaction between adjacent pix-
els, a signal at pixel position x is recorded by its neighbors
with some probability. This is called bleeding, and the
conditional probabilities of Eq. (1) are given by qkðxj ~nÞ ¼P

x0�k;nx0 PrðdÞ, where PrðdÞ is the probability of a signal

bleeding a distance d ¼ jx0 � xj. For a Poisson distribu-
tion, the average distance is characterized by the bleeding
parameter b. The qualitative effect on the Fisher informa-
tion is shown in Fig. 3(d).

Given the Cramér-Rao bound for the imaging resolution,
we would like to find a physical limit to the Fisher infor-
mation that in turn would give a fundamental limit to all
imaging procedures. The Fisher information is bounded by
Fð�Þ � 4ð�KÞ2=@2 [19], where �K is the variance of K,
the generator of translations in � such that �ð�Þ ¼
U�ð0ÞUy with U ¼ expð�i�K=@Þ. However, this relation
does not include any information about the substrate, since
it is a general bound on any possible metrological system
including ideal imaging procedures. Another important
question therefore concerns the best possible resolution
over all imaging systems and substrates, given a particular
constraint on the substrate. This is currently an open
question.

As pointed out by Tsang [20] and Steuernagel [21], the
practicality of some quantum imaging procedures such as
quantum lithography [6] is severely affected by the effi-
ciency of the measurement procedure. In the case of
M-photon lithography, the rate of the M-photon detection
events at pixel x yields our image IðxÞ. This is calculated as

IðxÞ ¼ 2

�
�

2N

�
M
cos2

�
M�‘xþM

�

2

�
: (13)

The constant of proportionality disappears in the normal-
ization procedure of Eq. (2), and hence does not contribute
to the Fisher information. However, it is clear that the
deposition rate of M-photon detection events falls off
exponentially. Any practical figure of merit must therefore
take into account both the resolution and the deposition
rate of the imaging procedure. We define a utility function
U for an imaging procedure as U ¼ F0D

c, which should
be maximized. Here, 0 � D � 1 is the deposition rate and
c > 0 a cost function that can take into account the re-
source cost of each attempted detection event. This may
reflect both physical and economical aspects of the imag-
ing procedure. For example, in the manufacturing of mi-
crochips, speed is an important factor, and the cost function
should be suitably weighted to reflect this. The deposition

rate can be defined on the basis of the POVM element Ê0

that indicates a failure to detect anything. If Ê0ðxÞ is the

POVM element for not detecting anything at pixel x, then

Ê0 ¼ NN
x¼1 Ê0ðxÞ, and the deposition rate can be given by

D ¼ XN

x¼1

Tr½�ð�ÞðI� Ê0Þ�: (14)

For M-photon lithography, D / N�ðM�1Þ. For M> 1, this
becomes a function that decreases polynomially with the
number of pixels N.
In conclusion, we have presented a general method for

establishing the quality of classical and quantum imaging
procedures based on the Fisher information. The resulting
Cramér-Rao bounds give better estimates of the resolution
than the Abbe and Rayleigh criteria and can take into
account the imperfections and edge effects of the substrate.
Moreover, this technique can be used in imaging via
higher-order photon correlations. The Fisher information
can be calculated using a POVM that models the substrate,
or it can be inferred directly from the experimental data
itself, circumventing the need for complex mathematical
modeling. We found that a saturation limit of the substrate
has a relatively small effect on the imaging resolution. A
utility function was defined that takes into account the
resolution as well as the efficiency of creating the image.
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