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Perturbation series in quantum field theory (QFT) are generally divergent asymptotic series which are

also typically not Borel resummable in the sense that the resummed series is ambiguous. The ambiguity is

associated with singularities in the Borel plane on the positive real axis. In quantum mechanics there are

cases in which the ambiguity that arises in perturbation theory cancels against a similarly ambiguous

contribution from instanton—anti-instanton events. In asymptotically free gauge theories, this mechanism

does not suffice because perturbation theory develops ambiguities associated with singularities in the

Borel plane which are closer to the origin by a factor of about N (the rank of the gauge group) compared to

the singularities realized by instanton events. These are called IR renormalon poles, and on R4 they do not

possess any known semiclassical realization. By using continuity on R3 � S1, and by generalizing the

works of Bogomolny and Zinn-Justin to QFT, we identify saddle point field configurations, e.g., bion-

antibion events, corresponding to singularities in the Borel plane which are of order N times closer to the

origin than the four-dimensional instanton–anti-instanton singularities in the Borel plane. We conjecture

that these are the leading singularities in the Borel plane and that they are the incarnation of the elusive

renormalons in the weak coupling regime.
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Perturbation theory in almost all interesting quantum
field theories is divergent even after proper regularization
and renormalization. A method that defines a finite pertur-
bative expansion is to resum it by first computing its
convergent Borel transform as a function of a complex
parameter, t, and then appropriately integrating the Borel
transform along the positive real axis in the t plane. But in
most cases the perturbative expansion is not Borel resum-
mable due to certain types of singularities of the Borel
transform. These obstructions amount to an ambiguity in
the would-be Borel sum. Therefore, if we take the Borel
procedure as the definition of perturbation theory, pertur-
bation theory by itself is ill defined.

In quantum mechanics there are cases, e.g., the double-
well potential, in which this disease of the Borel sum can
be cured by a procedure that we refer to as the
Bogomolny-Zinn-Justin (BZJ) prescription. Here the per-
turbative ambiguity cancels against a nonperturbative
contribution from instanton–anti-instanton events [1,2].
The sum of the perturbative and nonperturbative semi-
classical expansions in quantum mechanics apparently
produces ambiguity-free (and accurate) results [3]. But
it proved impossible to generalize this idea to asymptoti-
cally free field theories like QCD because of the occur-
rence of infrared (IR) renormalon singularities. These
singularities are much closer to the origin of the Borel
t plane than the Belavin-Polyakov-Schwarz-Tyupkin
(BPST) instanton–anti-instanton singularities [4,5], and

there are no known semiclassical configurations against
which to cancel the IR renormalon ambiguities.
In this work, by combining the ideas of Ref. [1,2,6,7]

involving compactification, continuity, and semiclassical
analysis, we argue that the appropriate sum of perturbative
and nonperturbative semiclassical expansions can be used
to give a nonperturbative continuum definition of a large
class of gauge field theories.
Borel resummation and the BZJ prescription in quantum

mechanics.—We first review the Borel resummation idea,
which we take as the definition of perturbation theory. Let
Pðg2Þ ¼ P1

n¼0 ang
2n denote a perturbation series for an

observable. If Pðg2Þ has a convergent Borel transform
BPðtÞ: ¼ P1

n¼0 ant
n=n! for positive real t, then

P ðg2Þ ¼ 1

g2

Z 1

0
BPðtÞe�t=g2dt (1)

formally gives back Pðg2Þ and we say Pðg2Þ is the (unique)
Borel resummation of Pðg2Þ. However, if BPðtÞ has singu-
larities at ti 2 Rþ, thenPðg2Þ as defined by the integral (1)
is ambiguous.
The ambiguity in Pðg2Þ can be seen as the freedom to

choose integration contours C� in (1) to go just above or
just below the singularity. (Equivalently, one can keep the
contour on the real axis but move the singularity location
by shifting g2 ! g2 � i�.) Define
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P�ðg2Þ :¼ 1

g2

Z

C�
BPðtÞe�t=g2dt: (2)

Then P�ðg2Þ ¼ RePðg2Þ � iImPðg2Þ, where ImPðg2Þ ¼
e�t1=g

2 þ e�t2=g
2 þ � � � .

An equivalent way to describe this ambiguity is to con-
sider Pðg2Þ as a function in the complex g2 plane. The
ambiguity of Pðg2Þ for g2 > 0 is a branch cut in the
complex g2-plane, and Pðg2Þ defines an analytic function
there except at the cut. In particular, very often a perturba-
tive sum Pðg2Þ that is non-Borel summable for g2 > 0 is
Borel summable for negative g2, where the answer is
unique. However, the analytic continuation from negative
to positive g2 is ambiguous since it can be done either in a

clockwise sense, ~Cþ, or in a counter-clockwise sense, ~C�,
ending at g2 � i�. The Borel sums obtained in this way by

continuations ~C� in the g2 plane are equivalent to the Borel
sums in (2) with choices of t plane contour C�,
respectively.

Borel sum ambiguities of the type �ie�t1=g
2
should be

viewed as a defect of perturbation theory. But it need not be
a problem in the full theory, and may actually provide a link
between the perturbative and nonperturbative physics.
First, the ambiguity in Pðg2Þ has the same form as an

instanton contribution: e�t1=g
2 � e�2SI where SI is the in-

stanton action. Furthermore, though there is no ambiguity
associated with an instanton amplitude [I] and it cannot
cancel the ambiguity of perturbation theory, an instanton–-

anti-instanton amplitude [I �I], on the other hand, does have
a twofold ambiguity [1,2]. The identification of this ambi-
guity and its cancellation against the ambiguity of the
perturbative Borel sum is what we call the BZJ prescription.

Let us review this argument as we will find conditions
under which it also occurs in field theory. While the space-
time position of a single instanton is an exact zero mode,
there is a relatively weak attractive interaction between an

I- �I pair, making their relative separation a quasizero
mode, parametrically split from the other nonzero modes.
One integrates over this quasizero mode in evaluating the

[I �I] amplitude.
Since the interaction is attractive, the integral over the

quasizero mode is dominated by small separations where a

well-defined I- �I configuration does not exist, rendering

the amplitude meaningless. But since I- �I configurations
carry the same quantum numbers as the perturbative vac-
uum, one must treat them as one does in perturbation
theory where one takes g2 negative to make it Borel

summable. When g2 < 0 the I- �I interaction is repulsive
at short distances and the quasizero mode integral is con-
centrated at some separation, r, much larger than the
instanton size, but much smaller than the typical single-
instanton separation [8]. Hence, such a defect should be
considered as a molecular instanton and at distances much
larger than r it can be treated as being pointlike. The

quasizero mode integral converges and the [I �I] amplitude,

obtained by analytically continuing back to positive g2, is
twofold ambiguous depending on the choice of the con-

tinuation path, ~C�. We call these two amplitudes ½I �I��,
respectively. As asserted above, the continuation of Pðg2Þ
from g2 < 0 to g2 > 0 also produces a two-fold ambiguity.
The ambiguity in the sum of the Borel summed and bi-
instanton amplitudes vanishes,

Im ½P�ðg2Þ þ ½I �I��ðg2Þ� ¼ 0; (3)

up to terms of order e�t2=g
2 � e�t1=g

2
[2,3]. This means

that the ambiguities at order e�t1=g
2
cancel, independent of

the choice of path, so long as one consistently uses C�
along with ~C�.
Thus although perturbation theory by itself is not

meaningful, the sum of both the perturbative and non-
perturbative parts of the semiclassical expansion does
seem to be meaningful. This is the essence of the BZJ
prescription.
Can this idea work in field theory, e.g., in QCD?

In Ref. [4] ’t Hooft argued that it does not work for
gauge theories on R4 due to the above-mentioned IR
renormalon problem. We will argue that it does work on
R3 � S1 in a gauge theory continuously connected to one
on R4, thus providing a new perspective on ’tHooft’s
renormalons.
QCD on R4: instantons and renormalons.—On R4, in

a QCD-like gauge theory with gauge group G, the
instanton–anti-instanton amplitude calculated in the same
way as above (for small four-dimensional (4D) instantons
for which one can do a semiclassical analysis) gives a con-

tribution ½I4
�I4�� ��ie�2nSI [9]. Therefore, according to

an argument of Lipatov [10] correlating the large-order
behavior of perturbation series with certain saddle point
configurations, the Borel transform has singularities at

t ¼ tn ¼ nð2SIÞg2 ¼ 16�2n; 0< n 2 Z; (4)

leading to ImP�ðg2Þ	�ie�tn=g
2 ¼�ie�2nSI . The ½I4

�I4��
singularities, as in the case of quantum mechanics, arise due
to the n! growth in the number of Feynman diagrams, and
the two ambiguities cancel. But this is far from a happy
ending.
The Borel transform BPðtÞ has other (far more impor-

tant) singularities closer to the origin of the Borel plane,
located at Refs. [4,5].

t ¼ ~tn ¼ nð2SIÞg2=�0; n ¼ 2; 3; . . . (5)

where �0 � N is the first coefficient of the beta function
and N ¼ rankðGÞ. These come from the leading diver-
gence of perturbation theory due to the sub-class of
‘‘bubble’’ diagrams (and not due to the n! growth in the
total number of Feynman diagrams). This class of dia-
grams grow as (n=2)! at n-th order in perturbation theory
with the main contribution coming from small internal
momenta of order �, the strong coupling scale of QCD,
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and give the poles in the Borel plane located at (5).
’t Hooft called these singularities ‘‘IR renormalons’’ in
the expectation or hope that they would be shown to be
associated with a semiclassical saddle pointlike instanton.
However, no such configuration is known to date.

Thus the disease of perturbation theory is not cured in
field theory as it is in the quantum mechanics examples.
This is not just a formal problem, but a reflection of a basic
and troubling lack of understanding of gauge theories. It
raises the conceptual question of whether a continuum
definition of these theories exists [4]. More practically, in
QCD phenomenology ‘‘power-law corrections’’ are in-
voked to remove the renormalon pole ambiguity in Pðg2Þ
[5] but without a microscopically justified and concrete
method to compute them.

QCD(adj) on R3 � S1: topological molecules.—A new
program to study 4D gauge dynamics is to use compacti-
fication on R3 � S1 where S1 is, crucially, a spatial (non-
thermal) circle with size L. This amounts to using periodic
(not anti-periodic) boundary conditions for fermions. With
this compactification, a class of gauge theories exists
which have no center-symmetry changing phase transition
or no phase transition at all as the radius is varied, in
contradistinction to the thermal case. Such theories exhibit
semiclassical calculability at fixed N and small L [6,7,11],
and volume independence in the large-N limit [12]. A
gauge theory in this category is Yang-Mills theory with
nf adjoint Majorana (or Weyl) fermions, abbreviated as

QCD(adj).
On a small S1, the dynamics of QCD(adj) is weakly

coupled. The gauge holonomy around the S1 behaves as a
compact adjoint Higgs field, and the gauge group abelia-
nizes at long distances, G ! Uð1ÞN , where N ¼ rankðGÞ,
similar to the Coulomb branch of N ¼ 2 supersymmetric
theories [13] and to the three-dimensional (3D) Polyakov
model [14]. The low energy theory is a collection of 3D
compact Uð1Þ’s with fermions. Although the long-distance
theory is 3D, the fact that the microscopic theory lives in
4D is crucial for confinement and other nonperturbative
properties [7].

Monopole-instantons Mi, i ¼ 1; . . . ; N þ 1, contribute
at leading nonperturbative order in the semiclassical ex-
pansion. These are associated with the simple roots and the
affine root ofG [15,16]. EachMi carries 2nf fermion zero

modes. So, unlike in the Polyakov mechanism in 3D, they
do not induce a mass gap and confinement [7,17]

The 4D BPST instanton carries 2nfh
_ fermion zero

modes where h_ � N is the dual Coxeter number of G.
The Mi’s may be viewed as h_ constituents of the 4D
BPST instanton. The action of these monopole events is
SMi

� SI4
=N. Therefore 4D BPST instantons are rela-

tively unimportant in the semiclassical expansion since
they only appear at about N-th order.

At second order in the semiclassical expansion there
are two types of topological molecules which lead to

amplitudes with no fermionic zero modes. These are in
one-to-one correspondence with the nonvanishing ele-

ments of the extended Cartan matrix Âij of G.

For each entry Âij < 0 there exists a magnetic bion,

Bij � ½Mi
�Mj�, a topological molecule with no fermionic

zero mode but with a net magnetic charge. The Bij gen-

erate a mass gap for gauge fluctuations and confinement in
QCD(adj) [7].

For each diagonal entry, Âii > 0, there exists a neutral

bion, Bii � ½Mi
�Mi�, with zero topological charge and

zero magnetic charge. The Bii generate a repulsion among
the eigenvalues of the gauge holonomy [18].
In QCD(adj), neither the contribution of the magnetic

bions nor of the neutral bions to amplitudes is ambiguous.
One might have suspected that the neutral bion would give
an ambiguous contribution as it has the same (vanishing)
quantum numbers as the perturbative vacuum. The fact that
it is not so in QCD(adj) is tied to the fermionic zero modes
of its constituents. In a purely bosonic theory, the neutral
bion Bii is the leading effect (second order in the semi-
classical expansion) to generate a nonperturbative ambi-
guity, see below. That instanton–anti-instanton amplitudes
can be ambiguity-free in a theory with fermions, but are
(necessarily) ambiguous in a purely bosonic theory is al-
ready known in the context of quantum mechanics [19]. A
classification of the effects of various types of saddle point
configurations will be given in Ref. [18].
The bion-antibion as renormalon.—In QCD(adj), we

concentrate on the contribution at fourth order in the
semiclassical expansion due to (quasi-) saddle point con-
figurations associated to magnetic bions and magnetic

antibions, [Bij
�Bij] molecules. They experience a

Coulomb attraction, and are indistinguishable from the
perturbative vacuum, according to their total topological
and magnetic charge. We, therefore, have to compute the
contribution of these correlated overall-neutral bion pair
amplitudes in the same way we do the purely perturbative
contributions, following the natural generalization of the
BZJ prescription to quantum field theory.
Therefore, first take g2 negative. Then the bion constit-

uents repel at small separations and the integral over the
quasizero mode is finite and concentrated around some
characteristic separation. In the integral over the quasizero
mode, one also needs to subtract the effect of uncorrelated
bionswhichwere already taken into account at second order
in the semiclassical expansion. This step is the same as in
quantum mechanics [1,2]. Now, analytically continue
back to positive g2. In doing so, we find [18] a twofold

ambiguity in the [Bij
�Bij] amplitude, namely, ½Bij

�Bij�� ¼
Re½Bij

�Bij� � iIm½Bij
�Bij� where Im½Bij

�Bij�	 exp�4SMi .

Then, following Lipatov [10], we predict poles in the Borel
plane located at

tn ¼ 4nSMi
g2 	 4nSI4

=N; 0< n 2 Z: (6)
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So we have found semiclassical saddle point configura-
tions for QCD(adj) on R3 � S1 giving Borel plane singu-
larities on the order of N times closer to the origin than the
4D BPST instanton–anti-instanton singularity. This is the
same neighborhood as the IR renormalon singularities of
’t Hooft, at least parametrically in N. In order for weakly
coupled continuum QCD(adj) on R3 � S1 to make sense,
we must have

ImP� þ Im½Bij
�Bij�� ¼ 0 for QCDðadjÞ: (7)

We make two conjectures: (1) The same set of bubble
diagrams in 4D which give the IR renormalon singularity

also give the [Bij
�Bij] singularity in perturbation theory

around the Abelianized Uð1ÞN vacuum. (2) Abelianizing
gauge theories with two-index representation fermions on
R3 � S1 have no other singularities closer to the Borel
plane origin. If these two conjectures are true, then these
theories may be nonperturbatively defined in the contin-
uum through their semiclassical expansions.

General gauge theories.—These arguments can be gen-
eralized to other gauge theories. In N ¼ 4 and N ¼ 2
supersymmetric extensions of pure Yang-Mills theory, de-
spite the fact that Mi’s exist, neither the neutral bion nor
the magnetic bion does [20]. The simplest way to see this is
to observe that the number of fermion zero modes of the
Mi’s prohibit a superpotential and, consequently, a bo-
sonic potential. This means that on R3 � S1 these theories
have no singularities on the positive real axis in the Borel
plane, are therefore Borel summable at finite S1, and, by
continuity and analyticity, on R4. This argument is com-
plementary to and in agreement with that of Ref. [21].

In pure Yang-Mills theory, since there is a phase tran-
sition on R3 � S1 as the radius is reduced, one might
conclude that this formalism does not apply. However,
there exists a smooth continuation of the large-S1 confined
phase to a small-S1 (weakly coupled) confined phase. The
small-S1 theory obtained in this manner is called deformed
Yang-Mills (DYM) theory [22]. In DYM theory the neutral

bion Bii ¼ ½Mi
�Mi� has an ambiguity corresponding to a

pole in the Borel plane located at tn ¼ 2nSMi
g2 ¼

2nSI4
=N. This is again in the same neighborhood, para-

metrically in N, as the IR renormalon poles of Yang-Mills
theory on R4 [4]. In this case the neutral bion is the
semiclassical incarnation of the IR renormalon. We expect
an ambiguity-free definition of DYM due to cancellations
such as

ImP� þ Im½Mi
�Mi�� ¼ 0 for DYM: (8)

A speculation in Ref. [4] is that IR renormalon singu-
larities might somehow be related to quark confinement.
Indeed, in the semiclassical regime we see that the prolif-
eration of Bij events in QCD(adj), and the proliferation of

Mi events in DYM generate a mass gap and confinement
[7,22]. So, at least in the semiclassical domain, a sharpen-
ing of ’t Hooft’s speculation is that the events at order n in

the semiclassical expansion which cause confinement are
responsible at order 2n for generating IR renormalon
singularities.
Finally, we note that the pole locations associated with

our topological molecules do differ from the proposed IR
renormalon pole locations on R4 by numerical (order one)
factors. This difference stems from the fact that our analy-
sis is in the semiclassical LN� & 1 domain. As we in-
crease L or N, we expect these poles to saturate to their
values on R4 in the volume independence LN� 
 1 do-
main. This last observation, in principle, should permit us
to study IR renormalons through equivalent large-N matrix
models [12,23], combined with the techniques of
Refs. [24,25].
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