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We use data from the Wilkinson Microwave Anisotropy probe temperature maps to constrain a scale-

dependent generalization of the popular ‘‘local’’ model for primordial non-Gaussianity. In the model

where the parameter fNL is allowed to run with scale k, fNLðkÞ ¼ f�NLðk=kpivÞnfNL , we constrain the

running to be nfNL ¼ 0:30þ1:9
�1:2 at 95% confidence, marginalized over the amplitude f�NL. The constraints

depend somewhat on the prior probabilities assigned to the two parameters. In the near future, constraints

from a combination of Planck and large-scale structure surveys are expected to improve this limit by about

an order of magnitude and usefully constrain classes of inflationary models.
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Introduction.—Non-Gaussianity in the distribution of
primordial density fluctuations provides a unique window
into the physics of inflation. The magnitude of primordial
non-Gaussianity and its dependence on scale provide
information about the dynamics of scalar field(s), their
interactions, and the speed of sound during inflation.
Constraints on non-Gaussianity have traditionally come
from the measurements of the three-point correlation func-
tion of the cosmic microwave background (CMB) tempera-
ture anisotropies. Upper limits from COBE [1] have been
improved by two orders of magnitude by the Wilkinson
Microwave Anisotropy probe (WMAP) experiment [2].
Moreover, clustering of galaxies and galaxy clusters has also
been identified as a powerful probe of non-Gaussianity [3],
already leading to interesting constraints that are complemen-
tary in their information content to the CMB measurements.

So far, most attention has been devoted to the ‘‘local’’
model of primordial non-Gaussianity, where the primordial
Newtonian potential�ðxÞ ismodifiedwith a quadratic term:
� ¼ �G þ fNLð�2

G � h�2
GiÞ, where �G is a Gaussian

potential [4]. The parameter fNL is currently constrained
to be 32� 21 by WMAP ([2]; see also Refs. [5,6]) and
28� 23 by the large-scale structure [7–9]. Several other
non-Gaussian models have been constrained as well
(e.g., Refs. [10,11]). However, the ‘‘running’’ with physical
scale of these models, which may carry important informa-
tion about the number of inflationary fields and their inter-
actions [12–23], has not yet been constrained with current
data (except for a very rough estimate of the angular-
multipole dependence of fNL [11] and implicit constraints
on a braneworld-motivated model [24]). Such constraints
have only been forecasted for future experiments [25–29].
Constraining the running of non-Gaussianity therefore
presents a major new opportunity to probe inflationary
physics and is just becoming feasible. In this Letter, we
present the first such constraints.

Model.—In this work we consider a physically moti-
vated generalization of the local model, where the parame-
ter fNL is promoted to a function of scale k. In particular,

we seek to constrain the two-parameter power-law subclass
of the generalized models [26]

fNLðkÞ ¼ f�NL
�
k

k�

�
nfNL

; (1)

where k� is an arbitrary fixed parameter, leaving f�NL and
nfNL as the parameters of interest in this model. Such

scaling is expected in inflation when more than one field
dominates or when there is self-interaction, and its signa-
tures in the CMB and LSS have been discussed in the
literature [25,26,30]. The parameter nfNL is often, though

certainly not always, expected to be& Oð1Þ in inflationary
models, but in our phenomenological model it is allowed
to take any value.
Bispectrum and f�NL estimator.—The primordial bispec-

trum of the fNLðkÞmodel from Eq. (1) is straightforward to
calculate:

Fð ~k1; ~k2; ~k3Þ ¼ 2½fNLðk1ÞPðk2ÞPðk3Þ þ perm:�; (2)

where the full bispectrum is Bð ~k1; ~k2; ~k3Þ � ð2�Þ3�ð ~k1 þ
~k2 þ ~k3ÞFð ~k1; ~k2; ~k3Þ. Here P is the power spectrum of the
primordial curvature perturbations, and � is the Dirac delta
function.
Constraining the running parameter nfNL seems difficult

because of the apparent requirement to find an estimator
for a parameter in an exponent. To avoid this, we resort to
an indirect approach where, for a fixed value of nfNL , we

estimate the parameter f�NL using modifications of the well-
known KSW estimator [31], which is known to be nearly
optimal [32,33]. We then iterate over the values of the
running nfNL to obtain the full likelihood Lðf�NL; nfNLÞ.
The theoretical expectation for the bispectrum of the

temperature anisotropies in the cosmic microwave back-
ground can be explicitly evaluated, starting from the defi-
nition of the generalized non-Gaussian local model in
Eq. (1) to account for the running nfNL :
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B
theory
‘1‘2‘3

ðf�NL; nfNLÞ ¼ 2f�NLI‘1‘2‘3 �
Z 1

0
r2drð�‘1ðnfNL ; rÞ

� �‘2ðrÞ�‘3ðrÞ þ perm:Þ; (3)

where I‘1‘2‘3 is the Gaunt integral and

�‘ðrÞ � 2

�

1

k
nfNL
piv

Z
k2þnfNL t‘ðkÞj‘ðkrÞdk (4)

�‘ðrÞ � 2

�

Z
k2P�ðkÞt‘ðkÞj‘ðkrÞdk: (5)

Here, t‘ is the radiation transfer function, which can be
calculated using CAMB [34]. Following KSW [31] we can
define new, filtered maps Aðn̂; rÞ and Bðn̂; rÞ,

Aðn̂; rÞ � X
‘;m

�‘ðnfNL ; rÞ
b‘
~C‘

a‘mY‘mðn̂Þ; (6)

Bðn̂; rÞ � X
‘;m

�‘ðrÞ b‘~C‘

a‘mY‘mðn̂Þ: (7)

Then, we write down the skewness SðnfNLÞ:
SðnfNLÞ �

Z
r2dr

Z
d2n̂Aðn̂; rÞB2ðn̂; rÞ; (8)

which requires nfNL as input (through A), and does not

require a priori knowledge of f�NL.
The observed CMB bispectrum is defined as Bobs:

‘1‘2‘3
¼

ha‘1m1
a‘2m2

a‘3m3
i, and SðnfNLÞ therefore reduces to

S ¼ X
‘1�‘2�‘3

Bobs
‘1‘2‘3

~Btheory
‘1‘2‘3

ðfNL ¼ 1Þ
~C‘1

~C‘2
~C‘3

; (9)

where ~Btheory
‘1‘2‘3

¼ b‘1b‘2b‘3B
theory
‘1‘2‘3

, and b‘ is the beam trans-

fer function.
We now define F � FðnfNLÞ, the Fisher matrix for f�NL,

equivalent to the cumulative signal-to-noise squared of the
theoretical bispectrum for f�NL ¼ 1

FðnfNLÞ ¼
X

‘1�‘2�‘3

ð ~Btheory
‘1‘2‘3

ðf�NL ¼ 1ÞÞ2
~C‘1

~C‘2
~C‘3

: (10)

The theoretical expectation for B‘1‘2‘3 / f�NL, so the cubic

KSW estimator for f�NL is:

f̂ �
NL ¼ S

F
: (11)

We used HEALPIX, by way of HealPy, to do the forward and
backward spherical harmonic transforms required to obtain
the A and B maps.

Cut-sky maps.—Equation (11) works well for a full-sky
map, but a sky cut introduces a spurious non-Gaussian
signal. To account for the masking of the CMB sky, we
make the substitution S ! Scut ¼ S=fsky þ Slinear [35].

Slinear is an addition to skewness from Eq. (8), calibrated
to account for partial-sky observations:

Slinear ¼ � 1

fsky

Z
r2dr

Z
d2n̂½Aðn̂; rÞhB2

simðn̂; rÞiMC

þ 2Bðn̂; rÞhAsimðn̂; rÞBsimðn̂; rÞiMC�: (12)

The subscripted filtered maps Asim and Bsim are created
from Python-produced Monte Carlo realizations of the cut
CMB sky; the brackets hiMC indicate an average over all
300 Monte-Python maps. The simulated maps were pro-
duced using the prescription laid out in Appendix A of the
WMAP5 paper [36]; the only difference (aside from using
the WMAP7 cosmological model) is that we used a uni-
form weighting for the maps, rather than the slightly more
complicated weighting given there, since it only gives a
marginal improvement in estimating fNL.
Likelihood evaluation.—To find the likelihood, we first

find a �2 statistic for f�NL, given a value of nfNL . Taking the
angular-averaged bispectrum B‘1‘2‘3 as our observables,

we have:

�2ðf�NL;nfNLÞ¼
X

‘1‘2‘3

ðBobs
‘1‘2‘3

�f�NL ~B
theory
‘1‘2‘3

ðnfNL ;f�NL¼ 1ÞÞ2
~C‘1

~C‘2
~C‘3

(13)

(Again, this works because the theoretical expectation
for B‘1‘2‘3 / f�NL.) Using Eqs. (9) and (10), we can rewrite
�2 as

�2ðf�NL; nfNLÞ ¼ F

�
f�NL �

S

F

�
2 þ �2

0 �
S2

F
; (14)

where �2
0�

P
‘1‘2‘3

ðBobs
‘1‘2‘3

Þ2=ð ~C‘1
~C‘2

~C‘3Þ is the goodness-
of-fit parameter for the data with respect to the f�NL ¼ 0
case. Note that the numerator of �2

0 is an observed quantity,

and the denominator is based solely on the theoretical
prediction for the power spectrum (as well as a few noise
and beam parameters of WMAP). Therefore, �2

0 does not

depend on f�NL or nfNL at all. We can use the definition of

f̂�NL in Eq. (11) to rewrite the expression for �2 as follows

�2ðf�NL; nfNLÞ ¼ Fðf�NL � f̂�NLÞ2 þ �2
0 � ðf̂�NLÞ2F: (15)

For a fixed value of nfNL , the �
2 is, as expected, minimized

in f�NL when f�NL ¼ f̂�NL, and one obtains �2
minðnfNLÞ ¼

�2
0 � ðf̂�NLÞ2F.
A more interesting task is to calculate the constraints

when nfNL is allowed to vary. With an expression for

�2ðf�NL; nfNLÞ in hand, we can write an expression for the

likelihood,Lðf�NL; nfNLÞ / expð��2=2Þ (dropping the con-
stant term with �2

0)

L ðnfNL ; f�NLÞ / exp

�
�Fðf�NL � f̂�NLÞ2

2

�
exp

�ðf̂�NLÞ2F
2

�
:

(16)

To marginalize over f�NL is also straightforward

PRL 109, 121302 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

21 SEPTEMBER 2012

121302-2



L ðnfNLÞ ¼
Z

LðnfNL ; f�NLÞdf�NL / 1ffiffiffiffi
F

p exp

�ðf̂�NLÞ2F
2

�
;

(17)

where, recall, FðnfNLÞ is defined in Eq. (10).

WMAP7 constraints on nfNL .—Figure 1 shows the like-

lihoodL in the nfNL-f
�
NL plane, as well as the likelihood for

nfNL alone, calculated from the WMAP7 temperature

maps. We used a weighted and masked combination of
the WMAP V and W band maps with the monopole and
dipole subtracted, as recommended by theWMAP team [36].
To extract full information from WMAP maps, we used
multipoles out to ‘max ¼ 800 for the sums in Eqs. (6), (7),
and (10).We did not find a significant improvement between
‘max ¼ 700 and ‘max ¼ 800; we chose the higher value to be
conservative in our analysis.

The quantity �2 is independent of our choice for kpiv, but

the likelihood itself is not, since F is inversely proportional

to k
2nfNL
piv . The true pivot scale favored by the data is the

value of kpiv for which the errors in f�NL are uncorrelated

with the errors in nfNL . We find this scale by using the

likelihood to calculate the covariance matrix C between
f�NL and nfNL

C pi;pj
¼ hðpi � �piÞðpj � �pjÞi: (18)

We can easily find the pivot value kpiv that diagonalizes the

covariance matrix C (see, e.g., Ref. [27])

kpiv ¼ k� exp
�
� Cf�NL;nfNL

f�NLCnfNL ;nfNL

�
; (19)

where k� is the (arbitrary) pivot used initially, and f�NL is
the corresponding value used in C. Despite the fact that k�
and f�NL show up in the expression, kpiv does not depend on

them: it is a fixed number telling us roughly where the

experiment has greatest power (and where normalization
and running of fNLðkÞ are precisely uncorrelated). We
find that kWMAP7

piv � 0:064h Mpc�1. The 68%, 95%, and

99% constraints on f�NL and nfNL are shown at the left

panel of Fig. 1, assuming flat priors on f�NL and nfNL and

k� ¼ kWMAP7
piv � 0:064h Mpc�1.

Dependence on the prior.—As with most present-day
cosmological measurements, the precise constraints
depend on the prior probability on the parameters we are
constraining. Even for a simple flat prior on f�NL and nfNL ,

the actual effective prior depends on the a priori chosen
pivot in wave number k�. For example, a flat prior on

ðf�NLÞð1Þ�fNLðk�;1Þ defined at some pivot k�;1 corresponds
to a nonflat prior on some ðf�NLÞð2Þ �f�NLðk�;2Þ defined

at some other pivot k�;2, since ðf�NLÞð2Þ �ðf�NLÞð1Þ�
ðk�;2=k�;1ÞnfNL . If we assume some alternate pivot k�;2 but

hold the flat prior in f�NL, the contours in the nfNL-f
�
NL plane

(left panel of Fig. 1) are stretched vertically by a factor of
ðk�;2=0:064h Mpc�1ÞnfNL .
We have experimented with different k-pivot values for

a flat prior on f�NL and nfNL . We have also investigated other

possibilities, such as the prior that assigns equal weight to
each decade in jf�NLj above 0.1 (so uniform in logðf�NLÞ, but
cut off at the arguably lowest-ever observable value of
jf�NLj ¼ 0:1 so that the total integrated likelihood is
finite). We present the two aforementioned examples,
showing constraints on nfNL marginalized over f�NL, in
the right panel of Fig. 1. In the end, we decide to quote
results for the flat prior and the uncorrelated kpiv value

from Eq. (19), which most closely follows priors to both
non-Gaussian and other cosmological parameters applied
in the literature.
Putting it all together, we can get the estimate for nfNL

from the WMAP7 data for a flat prior on f�NL at the pivot
kpiv from Eq. (19). The 68% (95%) confidence interval is

FIG. 1 (color online). Likelihood in the nfNL -f
�
NL plane (left panel) and marginalized over f�NL (right panel). The principal

constraints, shown in the left panel and with the bold blue curve on the right, correspond to the flat prior on f�NL at the pivot value

where the constraints on f�NL and nfNL are uncorrelated [see Eq. (19)]. In the right panel we also show the marginalized likelihood for

nfNL with a prior on f�NL that is uniform in logðf�NLÞ for jf�NLj> 0:1 and zero otherwise. The dashed curve in the left panel shows the

quantity f̂�NL, which is the best-fit value of the parameter f�NL for a fixed nfNL . See text for other details.
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nfNL ¼ 0:30þ0:78ð1:9Þ
�0:61ð1:2Þ: (20)

The current constraints are therefore fully consistent with
no running, as Fig. 1 clearly indicates. Figure 2 shows the
constraints in the fNLðkÞ plane together with a few repre-
sentative models allowed by the data.

Conclusions.—We have presented the first constraints on
the scale-dependence of (any form of) non-Gaussianity
using the WMAP7 data. The constraints are compatible
with zero running, nfNL ¼ 0, with very mild (< 1-sigma)

preference for a positive value of nfNL . We will learn more

soon: the Planck data and the data from upcoming large-
scale structure surveys should be able to improve con-
straints on the running of non-Gaussianity by about an
order of magnitude [25,28,29], thus shedding important
new light on the physics of inflation.
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