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The chemical potential of a hard-sphere fluid can be expressed in terms of the contact value of the radial

distribution function of a solute particle with a diameter varying from zero to that of the solvent particles.

Exploiting the explicit knowledge of such a contact value within the Percus-Yevick theory, and using

standard thermodynamic relations, a hitherto unknown Percus-Yevick equation of state, p=�kBT ¼
�ð9=�Þ lnð1� �Þ � ð16� 31�Þ=2ð1� �Þ2, is unveiled. This equation of state turns out to be better

than the one obtained from the conventional virial route. Interpolations between the chemical-potential

and compressibility routes are shown to be more accurate than the widely used Carnahan-Starling

equation of state. The extension to polydisperse hard-sphere systems is also presented.
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Motivation and discussion.—As is well known, the hard-
sphere (HS) model is of great importance in condensed
matter, colloids science, and liquid state theory from both
academic and practical points of view [1–3]. The model
has also attracted a lot of interest because it provides a nice
example of the rare existence of nontrivial exact solutions
of an integral-equation theory, namely the Percus-Yevick
(PY) theory [4] for odd dimensions [5–15].

As generally expected from an approximate theory,
the radial distribution function (RDF) provided by the
PY integral equation suffers from thermodynamic incon-
sistencies; i.e., the thermodynamic quantities derived from
the same RDF via different routes are not necessarily
mutually consistent. In particular, the PY solution for
three-dimensional one-component HSs of diameter �
yields the following expression for the compressibility
factor Z � p=�kBT (where p is the pressure, � is the
number density, kB is Boltzmann’s constant, and T is the
temperature) through the virial (or pressure) route [5–7]:

ZPY�vð�Þ ¼ 1þ 2�þ 3�2

ð1� �Þ2 : (1)

Here, � ¼ �
6 ��

3 is the packing fraction and the subscript

v is used to emphasize that the result corresponds to the
virial route. In contrast, the compressibility route yields

ZPY�cð�Þ ¼ 1þ �þ �2

ð1� �Þ3 : (2)

Equation (2) is also obtained from the scaled-particle
theory (SPT) [16–18]. The celebrated and accurate
Carnahan-Starling (CS) [19] equation of state (EOS) is
obtained as the simple interpolation

ZCSð�Þ ¼ 1

3
ZPY�vð�Þ þ 2

3
ZPY�cð�Þ

¼ 1þ �þ �2 � �3

ð1� �Þ3 : (3)

For general interaction potentials, the third conventional
route to the EOS is the energy route [1]. However, this
route is useless in the case of HSs since the internal energy
is just that of an ideal gas, and thus it is independent of
density. On the other hand, starting from a square-shoulder
interaction and then taking the limit of vanishing shoulder
width, it has been proved that the resulting HS EOS
coincides exactly with the one obtained through the virial
route, regardless of the approximation used [20,21].
Therefore, the energy and virial routes to the EOS can be
considered as equivalent in the case of HS fluids.
Except perhaps in the context of the SPT [16–18], little

attention has been paid to a fourth route to the EOS of HSs:
the chemical-potential route [22]. In particular, to the best
of the author’s knowledge, the possibility of obtaining the
EOS via this route by exploiting the exact solution of the
PY equation for HS mixtures [8] seems to have been over-
looked. The main aim of this Letter is to fill this gap and
derive the results

�ex
PYð�Þ
kBT

¼ 7�
1þ �=14

ð1� �Þ2 � lnð1� �Þ; (4)

ZPY��ð�Þ ¼ �9
lnð1� �Þ

�
� 8

1� 31
16�

ð1� �Þ2 ; (5)

where �ex is the excess chemical potential and the sub-
script� in Eq. (5) denotes that the compressibility factor is
obtained from Eq. (4). Equation (5) differs from Eqs. (1)
and (2) in that it includes a logarithmic term and thus it is
not purely algebraic. Nevertheless, ZPY��ð�Þ is analytic at
� ¼ 0 and provides well-defined values for the (reduced)
virial coefficients bn defined by

Zð�Þ ¼ 1þ X1
n¼2

bn�
n�1: (6)

Table I compares the first ten virial coefficients obtained
from the three PY EOS, Eqs. (1), (2), and (5), with the
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exact analytical (n ¼ 2–4) and Monte Carlo (n ¼ 5–10)
values [23,24]. The interpolated coefficients obtained
from Eq. (3) are also included. We observe that the

virial coefficients bðPY��Þ
n obtained from Eq. (5)

are in general noninteger rational numbers. More explic-

itly, bðPY��Þ
n ¼ ð18� 31nþ 15n2Þ=2n, while bðPY�vÞ

n ¼
2ð3n�4Þ, bðPY�cÞ

n ¼ ð3n2 � 3nþ 2Þ=2, and bðCSÞn ¼
ðnþ 2Þðn� 1Þ.

Interestingly enough, the virial coefficients from the
chemical-potential route are more accurate than those
from the virial route, although less than the ones from
the compressibility route. This suggests the possibility of
exploring CS-like interpolations of the form Z�cð�Þ ¼
�ZPY��ð�Þ þ ð1� �ÞZPY�cð�Þ with � � 0:4. Two sim-

ple and convenient choices are � ¼ 2
5 and � ¼ 7

18 . Thus,

Z�c;1ð�Þ¼2

5
ZPY��ð�Þþ3

5
ZPY�cð�Þ

¼�18

5

lnð1��Þ
�

�13�50�þ28�2

5ð1��Þ3 ; (7)

Z�c;2ð�Þ ¼ 7

18
ZPY��ð�Þ þ 11

18
ZPY�cð�Þ

¼ � 7

2

lnð1� �Þ
�

� 30� 117�þ 65�2

12ð1� �Þ3 : (8)

The values bð�c;1Þ
n ¼ ð36� 56nþ 21n2 þ 9n3Þ=10n and

bð�c;2Þ
n ¼ ð42� 65nþ 24n2 þ 11n3Þ=12n obtained from

Eqs. (7) and (8), respectively, are also displayed in
Table I. We observe a very good agreement, even better

than that of bðCSÞn , with the exact values, especially in the

case of bð�c;1Þ
n . In particular, bð�c;1Þ

10 is excellent.

The superiority of Z�c;1 and Z�c;2 over ZCS is confirmed

by Fig. 1, where the differences ZCSð�Þ � ZMDð�Þ,
Z�c;1ð�Þ � ZMDð�Þ, and Z�c;2ð�Þ � ZMDð�Þ (where ZMD

denotes molecular dynamics simulation values [25]) are
compared. As can be seen, both Z�c;1 and Z�c;2 deviate

from ZMD less than ZCS over most of the stable liquid
region. It is noteworthy that, while Z�c;1 predicts better

virial coefficients than Z�c;2, the latter EOS is more accu-

rate for �> 0:1.
In the case of a polydisperse HS fluid characterized by a

size distribution xð�0Þ, it will be proved elsewhere [26] that
Eqs. (4) and (5) are generalized to

�ex
PYð�;�Þ
kBT

¼ � lnð1� �Þ þ �

1� �

�
�3

M3

þ 3
M1�

2

M3

�
�
1þ �

1� �

M2�

M3

�
þ 3

M2�

M3

�
�
1þ 3

2

�

1� �

M2�

M3

��
; (9)

ZPY��ð�Þ ¼ 1

1� �
þM1M2

M3

3�

ð1� �Þ2

� 9
M3

2

M2
3

�
lnð1� �Þ

�
þ 1� 3

2�

ð1� �Þ2
�
; (10)

whereMn �
R1
0 d�0xð�0Þ�0n is the nth moment of the size

distribution and in Eq. (9) �ex
PYð�;�Þ is the excess chemi-

cal potential of spheres of diameter �. Equation (10)
differs from ZPY�v and ZPY�c for mixtures [8] only by
the coefficient of M3

2=M
2
3. Analogously to the one-

component case, it is possible to construct interpolated

FIG. 1 (color online). Plot of ZCSð�Þ � ZMDð�Þ (circles),
Z�c;1ð�Þ � ZMDð�Þ (triangles), and Z�c;2ð�Þ � ZMDð�Þ
(squares).

TABLE I. First ten virial coefficients bn as obtained exactly and from several EOS related to the PY theory.

n Exact ZPY�v ZPY�c ZPY�� ZCS Z�c;1 Z�c;2

2 4 4 4 4 4 4 4

3 10 10 10 10 10 10 10

4 18.36476. . . 16 19 16.75 18 18.1 18.125

5 28.2245 22 31 23.8 28 28.12 28.2

6 39.815 28 46 31 40 40 40.166. . .

7 53.34 34 64 38.285714. . . 54 53.714285. . . 54

8 68.54 40 85 45.625 70 69.25 69.6875

9 85.81 46 109 53 88 86.6 87.222. . .

10 105.8 52 136 60.4 108 105.76 106.6
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EOS Z�c ¼ �ZPY�� þ ð1� �ÞZPY�c, with � ¼ 2
5 or

� ¼ 7
18 , which are more accurate than the Boublı́k-

Mansoori-Carnahan-Starling-Leland EOS [27,28].
Once the main features and applications of the new PY

EOS (5) have been discussed, the rest of the Letter is
devoted to its derivation.

The chemical-potential route.—Let us consider
a d-dimensional system made of N hard spheres
(i ¼ 1; . . . ; N) of diameter � (the ‘‘solvent’’) plus one
‘‘solute’’ particle (i ¼ 0) which interacts with the solvent
particles via a HS potential of core �� with 0 � � � 1.
Thus, the total potential energy function is

�Nþ1ðrNþ1;�Þ � �Nþ1ðr0; r1; . . . ; rN;�Þ

¼ XN
j¼1

�HSðr0j=�Þ þ
X

1�i<j�N

�HSðrijÞ;

(11)

where rij ¼ jri � rjj and �HSðrÞ ¼ 1 if r < � and 0

otherwise. Thus,

e�	�Nþ1ðrNþ1;�Þ ¼ YN
j¼1

�ðr0j � ��Þ Y
1�i<j�N

�ðrij � �Þ;

(12)

where 	 � 1=kBT and�ðxÞ is the Heaviside step function.
We will further need the property

@

@�
e�	�Nþ1ðrNþ1;�Þ ¼ ��e�	�Nþ1ðrNþ1;�Þ XN

j¼1


ðr0j � ��þÞ:

(13)

The configuration integral of the solventþ solute sys-
tem is defined by

QNþ1ðV;�Þ ¼ V�ðNþ1Þ Z dr0
Z

dr1 . . .
Z

drN

� e�	�Nþ1ðrNþ1;�Þ; (14)

where V is the volume. Note that QNþ1ðV; 0Þ ¼ QNðVÞ is
the configuration integral of the N-particle system of sol-
vent particles. Likewise, QNþ1ðV; 1Þ ¼ QNþ1ðVÞ is the
configuration integral of a normal system of N þ 1 identi-
cal particles. Therefore, one can write [16]

�ex

kBT
¼ � ln

QNþ1ðVÞ
QNðVÞ ¼ �

Z 1

0
d�

@

@�
lnQNþ1ðV;�Þ: (15)

If � � 1
2 , the solute-solvent HS interaction is nonaddi-

tive since the solute can ‘‘penetrate’’ the hard core of radius
1
2�. Provided the solvent particles are in a nonoverlapping

configuration, the volume they exclude to the position of
the solute particle is simply Nvdð2��Þd, i.e.,

Z
dr0

YN
j¼1

�ðr0j � ��Þ ¼ V � Nvdð2��Þd; (16)

where vd ¼ ð�=4Þd=2=�ð1þ d=2Þ is the volume of a
d-dimensional sphere of unit diameter. Consequently,

QNþ1ðV;�Þ ¼ ½1� ð2�Þd��QNðVÞ; � � 1

2
; (17)

where � ¼ �vd�
d is the packing fraction of the solvent

system, � ¼ N=V being the number density. Equation (17)
allows one to rewrite Eq. (15) as

�ex

kBT
¼ � ln

QNþ1ðV; 12Þ
QNðVÞ � ln

QNþ1ðVÞ
QNþ1ðV; 12Þ

¼ � lnð1� �Þ �
Z 1

1
2

d�
@

@�
lnQNþ1ðV;�Þ: (18)

Next, we take into account that the RDF for the solute
particle is defined as

gðr01;�;�Þ ¼ V�ðN�1Þ

QNþ1ðV;�Þ
Z

dr2; . . . ;
Z

drN

� e�	�Nþ1ðrNþ1;�Þ: (19)

Application of Eq. (13) into Eq. (14) then yields

@

@�
lnQNþ1ðV;�Þ ¼ ���

Z
dr
ðr� ��þÞgðr;�;�Þ

¼ �d2d�d�1�gð�;�Þ; (20)

where in the second equality gð�;�Þ � gðr ¼ ��þ;�;�Þ.
From Eqs. (17) and (20) we obtain the exact result

gð�;�Þ ¼ 1

1� ð2�Þd� ; � � 1

2
: (21)

Let us now consider Eq. (18). Inserting Eq. (20),

�exð�Þ
kBT

¼ � lnð1� �Þ þ d2d�
Z 1

1
2

d��d�1gð�;�Þ: (22)

The thermodynamic relation�
@p

@�

�
T
¼ �

�
@�

@�

�
T

(23)

yields

@

@�
½�Z�ð�Þ� ¼ 1

1� �
þ d2d�

@

@�

�
�
�
Z 1

1=2
d��d�1gð�;�Þ

�
: (24)

Integrating both sides over density, we finally obtain

Z�ð�Þ ¼ � lnð1� �Þ
�

þ d2d�
Z 1

1=2
d��d�1gð�;�Þ

� d2d

�

Z �

0
d�0�0 Z 1

1=2
d��d�1gð�;�0Þ: (25)

This constitutes the chemical-potential route to the EOS of
the HS fluid. As in the virial route
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Zvð�Þ ¼ 1þ 2d�1�gð1;�Þ; (26)

Eq. (25) requires the contact value of the RDF, not the
full spatial dependence (as required by the compressibility
route). On the other hand, in contrast to Eq. (26), Eq. (25) is
‘‘nonlocal’’ in the sense that it needs the knowledge of
the contact value of a solute particle of diameter �0 ¼
ð2�� 1Þ� in the range 0 � �0 � � and, moreover, for
packing fractions �0 <�.

Equation (25) is formally exact. We now specialize to
the three-dimensional case (d ¼ 3) and consider the PY
approximation for gð�;�Þ, namely [8]

gPYð�;�Þ ¼ 1

1� �
þ 3

2

�

ð1� �Þ2
2�� 1

�
; � � 1

2
:

(27)

Insertion of the above expression into the right-hand sides
of Eqs. (22), (25), and (26) finally provides Eqs. (4), (5),
and (1), respectively.

The fact that Eq. (5) is more accurate than Eq. (1) can be
explained by the following argument. Equations (22), (24),
and (25) show that the chemical-potential route is directly
related to the integral

Z 1

1=2
d��d�1gð�;�Þ; (28)

which is proportional to a (weighted) average of the con-
tact value gð�;�Þ in the range 1

2 � � � 1. Since both the

contact value gð�;�Þ and its first derivative @gð�;�Þ=@�
at � ¼ 1

2 are given exactly by the PY equation [compare

Eqs. (21) and (27)], it seems reasonable that the ‘‘average’’
value (28) is better estimated than the end point at � ¼ 1
by the PY approximation.

Thus far, all the results have been specialized to HS
systems. In the more general case of particles interacting
through a potential �ðrÞ, one can still single out a particle
i ¼ 0 which interacts with the rest via a potential �ðr;�Þ
such that �ðr; 0Þ ¼ 0 and �ðr; 1Þ ¼ �ðrÞ. Proceeding in a
similar way as before, one arrives at [26]

�ex ¼ d2dvd�
Z 1

0
d�

Z 1

0
drrd�1gðr;�Þ@�ðr;�Þ

@�
: (29)

In this equation the �-protocol �ðr;�Þ remains arbitrary.
If �ðrÞ is not a singular potential, an obvious choice
is �ðr;�Þ ¼ ��ðrÞ [29]. However, this possibility is
ill-defined if, as happens with �HSðrÞ, the potential di-
verges over a finite range. In that case, an adequate choice

is �ðr;�Þ ¼ �ðr=�Þ. Using the identity @��ðr;�Þ ¼
�kBTe

	�ðr;�Þ@�e�	�ðr;�Þ in Eq. (29), and particularizing
to �HSðrÞ, the choice �ðr;�Þ ¼ �ðr=�Þ yields Eq. (22).

Conclusion.—In summary, a hitherto hidden EOS for a
HS fluid described by the PY liquid state theory, Eq. (5),
has been unveiled. This new EOS from the chemical-
potential route competes favorably with the conventional
one from the virial route by the reasons outlined above.

Thus, at least in the framework of the PY theory,
the chemical-potential route should be placed on the
same footing as the standard virial and compressibility
routes. Apart from its intrinsic academic and pedagogical
interest, the new EOS has a practical impact. For instance,
the chemical-potential and compressibility routes allow for
the construction of interpolation proposals, Eqs. (7) and (8),
which are more accurate than the widely used CS EOS.
Moreover, the use of Eq. (22) for HS fluids and Eq. (29) for
more general systems can be very helpful for the construc-
tion of accurate EOS. Extensions of this work to sticky hard
spheres [30] and to hyperspheres [9,10,13] are planned.
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M. López de Haro, L. L. Lee, and A. Malijevský for
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[12] M. Robles, M. López de Haro, and A. Santos, J. Chem.

Phys. 126, 016101 (2007).
[13] R. D. Rohrmann and A. Santos, Phys. Rev. E 76, 051202

(2007).
[14] R. D. Rohrmann and A. Santos, Phys. Rev. E 83, 011201

(2011).
[15] R. D. Rohrmann and A. Santos, Phys. Rev. E 84, 041203

(2011).
[16] H. Reiss, H. L. Frisch, and J. L. Lebowitz, J. Chem. Phys.

31, 369 (1959).
[17] M. Mandell and H. Reiss, J. Stat. Phys. 13, 113 (1975).
[18] M. Heying and D. Corti, J. Phys. Chem. B 108, 19756

(2004).
[19] N. F. Carnahan and K. E. Starling, J. Chem. Phys. 51, 635

(1969).
[20] A. Santos, J. Chem. Phys. 123, 104102 (2005).
[21] A. Santos, Mol. Phys. 104, 3411 (2006).
[22] This should not be confused with the chemical potential

obtained from zero-separation theorems. See, for instance,
P. V. Giaquinta, G. Giunta, and G. Malescio, J. Stat. Phys.
63, 141 (1991).

PRL 109, 120601 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

21 SEPTEMBER 2012

120601-4

http://dx.doi.org/10.1016/S0370-1573(00)00141-1
http://dx.doi.org/10.1103/PhysRev.110.1
http://dx.doi.org/10.1103/PhysRevLett.10.321
http://dx.doi.org/10.1063/1.1704158
http://dx.doi.org/10.1063/1.1734272
http://dx.doi.org/10.1103/PhysRev.133.A895
http://dx.doi.org/10.1080/00268978100100711
http://dx.doi.org/10.1016/0378-4371(84)90050-5
http://dx.doi.org/10.1063/1.1701840
http://dx.doi.org/10.1063/1.1701840
http://dx.doi.org/10.1063/1.2424459
http://dx.doi.org/10.1063/1.2424459
http://dx.doi.org/10.1103/PhysRevE.76.051202
http://dx.doi.org/10.1103/PhysRevE.76.051202
http://dx.doi.org/10.1103/PhysRevE.83.011201
http://dx.doi.org/10.1103/PhysRevE.83.011201
http://dx.doi.org/10.1103/PhysRevE.84.041203
http://dx.doi.org/10.1103/PhysRevE.84.041203
http://dx.doi.org/10.1063/1.1730361
http://dx.doi.org/10.1063/1.1730361
http://dx.doi.org/10.1007/BF01221372
http://dx.doi.org/10.1021/jp040398b
http://dx.doi.org/10.1021/jp040398b
http://dx.doi.org/10.1063/1.1672048
http://dx.doi.org/10.1063/1.1672048
http://dx.doi.org/10.1063/1.1992469
http://dx.doi.org/10.1080/00268970600968011
http://dx.doi.org/10.1007/BF01026597
http://dx.doi.org/10.1007/BF01026597


[23] S. Labı́k, J. Kolafa, and A. Malijevský, Phys. Rev. E 71,
021105 (2005).

[24] N. Clisby and B.M. McCoy, J. Stat. Phys. 122, 15 (2006).
[25] J. Kolafa, S. Labı́k, and A. Malijevský, Phys. Chem.
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