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Quantum state tomography is the task of inferring the state of a quantum system by appropriate

measurements. Since the frequency distributions of the outcomes of any finite number of measurements

will generally deviate from their asymptotic limits, the estimates computed by standard methods do not in

general coincide with the true state and, therefore, have no operational significance unless their accuracy is

defined in terms of error bounds. Here we show that quantum state tomography, together with an

appropriate data analysis procedure, yields reliable and tight error bounds, specified in terms of confidence

regions—a concept originating from classical statistics. Confidence regions are subsets of the state space

in which the true state lies with high probability, independently of any prior assumption on the distribution

of the possible states. Our method for computing confidence regions can be applied to arbitrary

measurements including fully coherent ones; it is practical and particularly well suited for tomography

on systems consisting of a small number of qubits, which are currently in the focus of interest in

experimental quantum information science.

DOI: 10.1103/PhysRevLett.109.120403 PACS numbers: 03.65.Wj, 02.50.�r, 03.67.�a

The state of a classical system can, in principle, be
determined to arbitrary precision by applying a single
measurement to it. Any imprecisions are due solely to
inaccuracies of the measurement technique but not of
fundamental nature. This is different in quantum theory.
It follows from Heisenberg’s uncertainty principle that
measurements generally have a random component and
that individual measurement outcomes only give limited
information about the state of the system—even if an ideal
measurement device is used. To illustrate this difference, it
is useful to take an information-theoretic perspective.
Assume, for instance, that we are presented with a two-
level system about which we have no prior information
except that it has been prepared in a pure state, and our task
is to determine this state. If the system was classical, there
are only two possible pure states, and one single bit of
information is therefore sufficient for its full description.
Furthermore, a single measurement of the system suffices
to retrieve this bit. If the system was quantum, however, the
situation becomes more interesting. A two-level quantum
system (a qubit) admits a continuum of pure states that can,
for example, be parametrized by a point on the Bloch
sphere. To determine this point to a given accuracy �, at
least log2ð4=�2Þ bits of information are necessary [1].
Conversely, according to Holevo’s bound [2], any mea-
surement applied to a single qubit will provide us with at
most one bit of information. And even if n identically
prepared copies of the qubit were measured, at most
log2ðnþ 1Þ bits of information about their state can be
obtained [3]. Hence, the accuracy,�, to which the state can

be determined always remains finite (� � 2=
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
),

necessitating the specification of error bars.
The impact that randomness in measurement data has on

the accuracy of estimates has been studied extensively in

statistics and, in particular, estimation theory [4]. The latter
is concerned with the general problem of estimating the
values of parameters from data that depend probabilisti-
cally on them. The data may be obtained from measure-
ments on a quantum system with parameter-dependent
state, as considered in quantum estimation theory [5].
Quantum state tomography can be seen as a special in-
stance of quantum estimation, where one aims to estimate a
set of parameters large enough to determine the system’s
state completely [6–12].
An obvious choice of parameters are the matrix elements

of a density operator representation of the state. Because
of the finite accuracy, however, the individual estimates
for the matrix elements do not generally correspond to
a valid density operator (for instance, the matrix may
have negative eigenvalues). This problem is avoided with
other techniques, such as maximum likelihood estimation
(MLE) [10,13,14], which has been widely used in experi-
ments [15–21], or Bayesian estimation [5,22–27].
InMLE, an estimate for the error bars canbeobtained from

the width of the likelihood function, which is approximated
by the Fisher information matrix [12,13,28–31]. In current
experiments, one also usesnumerical plausibility tests known
as ‘‘bootstrapping’’ or,moregenerally, ‘‘resampling’’ [20,32]
in order to obtain bounds on the errors. However, despite
being reasonable in many practical situations, these bounds
are not known to have a well-defined operational interpreta-
tion and, in the case of the resamplingmethod,may lead to an
underestimate of the errors [33].
In contrast, Bayesian methods can be used to calculate

‘‘credibility regions’’, i.e., subsets of the state space in
which the state is found with high probability. This
probability, however, depends on the choice of a ‘‘prior’’,
corresponding to an assumption about the distribution
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of the states before the measurements (in particular, the
assumption can not be justified by the experimental data).
Furthermore, we remark that most known techniques are
based on the assumption of independent and identical mea-
surements (a notable exception is the one-qubit adaptive
tomography analysis of Ref. [34]). We refer to Ref. [26] for
a further discussion of currently used approaches to quan-
tum state tomography, including pedagogical examples
illustrating their limitations.

In this Letter, we introduce a method to obtain confi-
dence regions, that is, regions in state space which contain
the true state with high probability. A point in the region
may then serve as estimate, and the maximal distance of
the point to the border of the region as error bar. Our
method allows us to analyze data obtained from arbitrary
quantum measurements, including fully coherent ones.
The method does not rely on any assumptions about the
prior distribution of the states to be measured. This makes
it highly robust so that it can, for instance, be applied in
the context of quantum cryptography, where the states to be
estimated are chosen adversarially.

The remainder of this Letter is organized as follows: We
first describe a very general setup for tomography of
quantum states prepared in a sequence of experiments,
where we do not make the typical assumption that the states
are independent and identically distributed (IID). We then
show that, nevertheless, properties of the states can be
inferred reliably using a suitable tomographic data analysis
procedure (Theorem). In motivation and spirit, this result
relates to recent research efforts on quantum de Finetti
representations. We then specialize our setup to the case
where, in principle, the experiments may be run an arbitrary
number of times (while still only finitelymany runs are used
to generate data). This special case is (by the quantum de
Finetti theorem) equivalent to an IID preparation of the
states, thereby justifying the common IID assumption in
data analysis. The theorem, applied to this special case, then
results in a construction for confidence regions for quantum
state tomography (Corollary).

General scenario.—Consider a collectionS1; . . . ;Snþk of
finite-dimensional quantum systems with associated Hilbert
spaceH , as depicted in Fig. 1 (see also Refs. [35,36], where
a similar setup is considered).We denote by d the dimension
of H . For example, one may think of nþ k particles pre-
pared in a series of experiments, whereH could correspond
to the spin degree of freedom. From this collection, a sample
consisting of n systems is selected at random and measured
according to an (arbitrary) positive operator valued measure
(POVM) fBng, a family of positive semidefinite operators
Bn on H �n such that

P
BnBn ¼ 1�n

H
. That is, each POVM

element Bn corresponds to a possible sequence of outcomes
resulting from (not necessarily independent) measurements
on the n systems. The goal of quantum state tomography is to
infer the state of the remaining k systems, using the outcomes
of these measurements.

Note that the k extra systems are not measured during data
acquisition. Nevertheless, they play a role in the above
scenario, as they are used to define operationally what state
we are inferring. (In the special case of IID states, the extra
systems are simply copies of the measured systems—see
below.) We also remark that, instead of measuring a sample
of n systems chosen at random, one may equivalently per-
mute the initial collection of nþ k systems at random and
thenmeasure the first n of them, i.e., S1; . . . ;Sn. Wewill use
this alternative description for our theoretical analysis.
In order to describe our main results, we imagine that the

measurement outcomes Bn are processed by a data analysis
routine that outputs a probability distribution �Bn on the
set of mixed states, defined by

�Bnð�Þd� ¼ 1

cBn

tr½��nBn�d�

(see Fig. 2 for an illustration). Here d� denotes the
Hilbert-Schmidt measure with

R
d� ¼ 1. Furthermore,

cBn ¼ tr½Bn � 1�nK � 1SymnðH�KÞ�=ðnþd2�1
d2�1 Þ is a normaliza-

tion constant, whereKffiH ffiCd and where 1SymnðH�KÞ
is the projector onto the symmetric subspace of
ðH �KÞ�n. Note that, in Bayesian statistics, �Bnð�Þd�
corresponds to the a posteriori distribution when updating

FIG. 1 (color online). General scenario. Measurements are
applied to a sample S1; . . . ;Sn consisting of n systems, chosen
at random froma collection ofnþ k systems. The outcomes of the
measurements are collected and given as input, Bn, to a data
analysis procedure (left orange part). The aim of quantum state
tomography is to make reliable predictions about the state of the
remaining k (non-measured) systems Snþ1; . . . ;Snþk. To model
such predictions, we consider hypothetical tests, which output
‘‘success’’ whenever their input has a desired property (right blue
part). Given only the output of the data analysis procedure, �Bn ,
it is possible to characterize the testsT�Bn

that are passedwith high

probability—independently of the initial state of the nþ k sys-
tems (Theorem).
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a Hilbert-Schmidt prior d�. Furthermore, in MLE, � �
tr½��nBn� is known as the likelihood function. Since our
work is not based on either of these approaches, however,
we will not use this terminology and simply refer to �Bn .

Reliable predictions.—We now show that �Bn contains
all information that is necessary in order to make reliable
predictions about the state of the remaining systems
Snþ1; . . . ;Snþk. To specify these predictions, we consider
hypothetical tests, a quantum version of a similar concept
used in classical statistics. Any such test acts on the joint
system consisting of Snþ1; . . . ;Snþk (see Fig. 1).
Mathematically, a test is simply a measurement with a
binary outcome, ‘‘success’’ or ‘‘failure’’, specified by a
joint POVM fTfail; 1�k

H
� Tfailg onH �k [37]. Note that the

state of Snþ1; . . . ;Snþk could be inferred if we knew which
hypothetical tests it would pass. Hence, instead of estimat-
ing this state directly, we can equivalently consider the task
of predicting the outcomes of the hypothetical tests.

Assume now that we carry out a testT�Bn
¼fTfail

�Bn
;1�kH �

Tfail
�Bn

g depending on �Bn . We denote by �nþk the (un-

known) joint state of the systems S1; . . . ;Snþk before the
tomographic measurements. (As described above, we can
assume without loss of generality that the systems are
permuted at random, so that �nþk is permutation invariant.)
If the outcome of the tomographic measurement is Bn, then
the postmeasurement state of the remaining systems is
given explicitly by �k

Bn ¼ ½1=trðBn�nÞ�trH �n ½Bn � 1�k
H

�
�nþk�, where trH �n denotes the partial trace over the n
measured systems. Hence, the probability that the testT�Bn

fails for the above state �k
Bn equals tr½Tfail

�Bn
�k
Bn�. The fol-

lowing theorem now provides a criterion under which this
failure probability is upper bounded by any given � > 0.
Crucially, the criterion only depends on �Bn , which is
obtained by the tomographic data analysis. In other words,

�Bn allows us to determine which hypothetical tests the
state �k

Bn would pass.
Theorem (reliable predictions from�Bn).—For all Bn let

Tfail
�Bn

be a POVM element on H �k such that

Z
�Bnð�Þtr½Tfail

�Bn
��k�d� � �c�1

nþk;d;

where cN;d ¼ ðNþd2�1
d2�1 Þ. Then, for any �nþk,

htr½Tfail
�Bn

�k
Bn�iBn � �;

where h�iBn denotes the expectation taken over all possible
measurement outcomes Bn when measuring �n (i.e., out-
come Bn has probability tr½Bn�n�).
As we shall see, the tests are typically chosen such that

the integral over d� decreases exponentially with n. The
additional factor c�1

nþk;d, which is inverse polynomial in

nþ k, plays, therefore, only a minor role in the criterion.
We also emphasize that the theorem is valid independently
of how the systems S1; . . . ;Snþk have been prepared. In
particular, the (commonly made) assumption that they all
contain identical copies of a single-system state is not
necessary.
The proof of the theorem, together with a slightly more

general formulation, is provided in the Supplemental
Material [38]. It makes crucial use of the following
fact, which has also been used in quantum-cryptographic
security proofs: there exists a so-called de Finetti state �N ,
i.e., a convex combination of tensor products, such that
�N � cN;d � �N holds for all permutation-invariant states

�N on H �N [39,40].
Confidence regions.—A confidence region is a subset of

the single-particle state space which is likely to contain
the ‘‘true’’ state. In order to formalize this, we consider the
practically relevant case of an experiment that can, in

FIG. 2 (color online). Illustration of �Bn . The graphs show �Bn for measurements performed on n ¼ 20 and n ¼ 240 qubits
(for illustration purposes, we only depict the density�Bn on the surface of the Bloch ball). Half of the qubits have been measured in the
z direction and half in the y direction with relative frequencies of (0:2, 0:8) and (0:7, 0:3), respectively. One observes a rapid decrease
in the size of the bright regions (which are connected by a bright tube inside the Bloch ball), which correspond to large values of �Bn .
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principle, be repeated arbitrarily often. Within the above-
described general scenario, this corresponds to the limit
where k approaches infinity while n, the number of actual
runs of the experiment (whose data is analyzed), is still
finite and may be small.

Since the initial state �nþk of all nþ k systems can
without loss of generality be assumed to be permutation
invariant (see above), the quantum de Finetti theorem
[35,41–44] implies that, for fixed n; k0 2 N, the marginal

state �nþk0 on nþ k0 systems is approximated by a mixture
of product states, i.e.,

�nþk0 ¼ trk�k0 ð�nþkÞ �
Z

Pð�Þ��ðnþk0Þd�; (1)

for some probability density function P and approximation
error proportional to 1=k. In the limit of large k, the

marginal state �nþk0 is thus fully specified by P. We can
therefore equivalently imagine that all systems were pre-
pared in the same unknown ‘‘true’’ state �, which is
distributed according to P (see Fig. 3). This corresponds
to the IID assumption commonly made in the literature on
quantum state tomography, which is therefore rigorously
justified within our general setup.

As before, we assume that tomographic measurements
are applied to the systems S1; . . . ;Sn, whereas the remain-
ing systems, Snþ1; . . . ;Snþk0 , undergo a test (depending on
the output �Bn of the data analysis procedure). We may
now consider tests that are passed if and only if the true
state � is contained in a given subset ��

�Bn
of the state

space. The following corollary provides a sufficient crite-
rion under which the tests are passed, so that ��

�Bn
are

confidence regions. (Note that the criterion refers to addi-
tional sets ��Bn

that are related to the confidence regions

��
�Bn

; see Supplemental Material [38] for an illustration.)

Corollary (confidence regions from�Bn).—For all Bn let
��Bn

be a set of states on H such that

Z
��Bn

�Bnð�Þd� � 1� �

2
c�1
2n;d: (2)

Then, for any �,

ProbBn½� 2 ��
�Bn

� � 1� �;

where ProbBn refers to the distribution of the measurement
outcomes Bn when measuring ��n (i.e., outcome Bn has
probability tr½Bn��n�) and where

��
�Bn

¼ f�:9�0 2 ��Bn
with Fð�;�0Þ2 � 1� �2g; (3)

with �2 ¼ 2
n ðln2� þ 2 lnc2n;dÞ and Fð�;�0Þ ¼ k ffiffiffiffi

�
p ffiffiffiffiffi

�0p k1
the fidelity.

The main idea for the proof of the corollary is to apply
the above theorem to tests (acting on k0 ¼ n systems)
derived from Holevo’s optimal covariant measurement
[45]. We refer to the Supplemental Material [38] for the
technical proof.

Note that 1� � can be interpreted as the confidence
level of the statement that the true state � is contained in
the set ��

�Bn
. Crucially, the claim is valid for all �. In

particular, it is independent of any initial probability dis-
tribution, P, according to which � may have been chosen
[see Eq. (1)]. In other words, the operational interpretation
of the sets ��

�Bn
as confidence regions does not depend on

any extra assumptions about the preparation procedure or
on the specification of a prior. In fact, � could even be
chosen ‘‘maliciously’’, for example, in a quantum crypto-
graphic context, where an adversary may try to pretend
that a system has certain properties (e.g., that its state is
entangled while in reality it is not).
Obviously, the assertion that a state � is contained in a

certain set ��
� can only be considered a good approxima-

tion of � if the set ��
� is small. This is indeed the case for

reasonable choices of the measurement fBng. For instance,
in the practically important case where each system is
measured independently and identically with POVM fEig,
the confidence region is, for generic states, asymptotically
of size proportional to 1ffiffi

n
p in the (semi)norm on the set

FIG. 3 (color online). Tomography of identically prepared
systems. This scenario falls into the framework depicted in
Fig. 1, corresponding to the limit where the number of extra
systems, k, approaches infinity. In this case, we can assume
without loss of generality that the systems have been prepared
in a two-step process: first, a description ‘‘�’’ of a single-system
state is sampled at random (according to some probability density
P); second, n identical systemsS1; . . . ;Sn are prepared in state�.
The k extra systems of Fig. 1 are replaced by a classical variable
carrying the description ‘‘�’’. Given only the output of the tomo-
graphic data analysis, �Bn , it is possible to decide whether � is
(with probability at least 1� �) contained in a given set ��

�Bn

(Corollary). If this is the case then ��
�Bn

is a confidence region

(with confidence level 1� �).
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of quantum states induced by the POVM: k � kfEig ¼P
ijtrðEi�Þj [38,46].
Conclusion.—Despite conceptual differences, our tech-

nique is not unrelated to MLE and Bayesian estimation. As
mentioned before, �ð�Þ is proportional to the likelihood
function, and therefore, methods to construct confidence
regions with our technique are likely to use adaptations of
techniques from MLE. Also, �Bnð�Þd� corresponds to the
probability measure obtained from applying Bayes’s up-
dating rule to the Hilbert-Schmidt measure; a fact that
implies near optimality [47] of our method in the practi-
cally most relevant case of independent tomographically
complete measurements [25].

Recently, another novel approach to quantum state
tomography has been proposed [48,49], which yields reli-
able error bounds similar to ours. A central difference
between this approach and ours is the level of generality.
In Refs. [48,49], a specific sequence of measurement op-
erations is proposed, which is adapted to systems whose
states are fairly pure. Under this condition, the estimate
converges fast and, in addition, can be computed effi-
ciently. In contrast, our method can be applied to arbitrary
measurements (i.e., any tomographic data may be ana-
lyzed). Accordingly, the convergence of the confidence
region depends on the choice of these measurements.
However, we do not propose any specific algorithm for
the efficient computation of confidence regions.

Finally, we refer to the very recent work of Blume-
Kohout [33] for an excellent discussion of the notion of
confidence regions in quantum state tomography. In par-
ticular, he shows that confidence regions, as considered
here, can be defined via likelihood ratios.
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