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We show that a single Bell’s inequality with two dichotomic observables for each observer, which

originates from Hardy’s nonlocality proof without inequalities, is violated by all entangled pure states of a

given number of particles, each of which may have a different number of energy levels. Thus Gisin’s

theorem is proved in its most general form from which it follows that for pure states Bell’s nonlocality and

quantum entanglement are equivalent.
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Quantum nonlocality as revealed by the violations of
various Bell’s inequalities [1] is intriguingly related to
quantum entanglement. On the one hand Werner [2]
showed that there exist entangled (mixed) states that can
be simulated by local hidden variable models and thus
cannot exhibit any nonlocality in the manner of Bell. On
the other hand Gisin [3] showed that all the entangled pure
states of two qubits violate a single Bell’s inequality,
namely the Clause-Horne-Shimony-Holt (CHSH) inequal-
ity [4], with two different measurement settings for each
observer. This result is referred to as Gisin’s theorem and
ever since there have been many efforts [5–12], successful
and unsuccessful, to generalize Gisin’s theorem to multi-
partite systems with multilevels, trying to establish an
equivalency between the quantum entanglement and
Bell’s nonlocality for pure states.

The first effort to generalize Gisin’s theorem to multi-
partite systems was made by Popescu and Rohrlich [5] who
showed that all the entangled pure multipartite states vio-
late a set of conditional Bell inequalities. Since postselec-
tions are involved, as noticed by Żukowski et al. [6], their
approach cannot be regarded as a valid proof of Gisin’s
theorem for a multipartite system. Also it was shown that
Bell inequalities for full correlations with two dichotomic
observables for each observer cannot reveal the nonlocality
of all entangled pure n-qubit states [6]. A breakthrough
was made by Chen et al. [7] who showed numerically that
all 3-qubit pure entangled states violate a Bell inequality
for probabilities with an analytical proof given by
Choudhary et al. [8], showing that a single Bell’s inequal-
ity with two nondegenerate measurement settings is vio-
lated by all entangled pure states of three qubits. As to
higher dimensional systems, Gisin and Peres proved [9]
that all the entangled pure states of two qudits also violate
the CHSH inequality and an alternative proof is given by
Chen et al. [10].

Recently a tentative proof of Gisin’s theorem for multi-
particles with an arbitrary number of energy levels was

given by Li and Shao [11]. They showed that for every
entangled pure state of multiparticles there exists a parti-
tion of particles into two groups such that a bipartite Bell’s
inequality with two trichotomic observables for each group
is violated. Unfortunately, to obtain violations to their
inequalities one needs to measure some collective observ-
ables for each effective party which may involve several
particles. This violates the multipartite locality as com-
mented on by Choudhary et al. [12]. Thus a proof for
Gisin’s theorem in general is still missing.
In this Letter we shall prove Gisin’s theorem in its most

general form by showing that all the entangled pure states
violate a single Bell’s inequality with two different mea-
surement settings for each observer. After a short introduc-
tion to this special Bell’s inequality, referred to as Hardy’s
inequality since it originated from Hardy’s proof of non-
locality without inequality, we shall at first demonstrate its
violation by an arbitrary entangled pure state of n qubits.
We then reduce the problem of finding its violation by an
entangled pure state of multiparticles, each of which may
have a different number of energy levels, to that of an
effective set of n qubits obtained by locally projecting n
qudits to n qubits.
Hardy’s inequality.—Consider a system composed of n

spacelike separated subsystems that are labeled with the
index set I ¼ f1; 2; . . . ; ng. In any local realistic model the
value of an observable of any subsystem is determined by
some hidden variables �, distributed according to %�, and
is independent of which observables might be measured on
other subsystems as required by multipartite locality. For
each subsystem k 2 I we choose two observables fak; bkg
taking binary values f0; 1g, and Hardy’s inequality reads

hHic :¼
Z

d�%�H � 0; H ¼ aI � �bI �
X
k2I

bka �k; (1)

where we have denoted a� ¼ Q
k2�ak and �b� ¼ Q

k2�
�bk

with �bk ¼ 1� bk for an arbitrary subset � � I and
�k ¼ I n fkg for arbitrary k 2 I. Based on Hardy’s proof
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of nonlocality without inequality [13] Mermin formulated
Hardy’s inequality for two qubits [14] which was general-
ized to n qubits by Cereceda [15]. Hardy’s inequality is a
Bell’s inequality for probabilities and, as it stands, is
applicable for a system of n particles each of which may
have a different number of energy levels.

Hardy’s nonlocality proof can be regarded as a state-
dependent proof of quantum contextuality for n qubits
using 2n rays. To see this let us consider any noncontextual
value assignment to 2n binary observables fak; bkgk2I in
the spirit of Kochen and Specker [16] and it is impossible
to have �bI ¼ bka �k ¼ 0 for all k 2 I while aI ¼ 1 if the
product rule of value assignments holds. This is because
aI ¼ 1 leads to ak ¼ 1 for all k 2 I and from bka �k ¼ 0 it
follows that bk ¼ 0 for all k 2 I and thus �bI ¼ 1, a contra-
diction. As a result in any noncontextual theory H can
never attain a positive value so that Hardy’s inequality
holds.

For a given entangled pure state jc i of n particles, also
labeled with I, to violate Hardy’s inequality Eq. (1) one
must find out two measurement settings fjaki; jbkig for
each particle k 2 I such that

hHic :¼ jhc jaIij2 � jhc j �bIij2 �
X
k2I

jhc ja �kbkij2 > 0; (2)

where jaIi ¼ �k2Ijakik, j �bIi ¼ �k2Ij �bkik with j �bkik being
orthogonal to jbkik, and ja �kbki ¼ �i�kjaiii � jbkik.
Hardy’s nonlocality proof, in which the measurement
settings are so chosen that only the first term of hHic is

nonvanishing, provides a natural violation to Hardy’s in-
equality. However not all entangled pure states, e.g., maxi-
mally entangled bipartite states [13] and a subset of 3-qubit
states [17], can have Hardy’s nonlocality proof. On the
other hand Hardy’s inequality, being equivalent to the
CHSH inequality in the case of two particles, is violated
by all the entangled pure bipartite states [3,9]. The analyti-
cal proof of Gisin’s theorem for 3 qubits [8] is also based
on Hardy’s inequality, which is found to be violated by all
the entangled symmetric pure states of n qubits [18]. Here
we shall demonstrate that Hardy’s inequality is violated by
all entangled pure states.

Violations for qubits.—We consider at first n qubits,
labeled with the index set I, and take an arbitrary basis

fj0ik; j1ikg for each qubit k 2 I so that fj0�1 ��ig��I form a

basis for n qubits where j0�i ¼ �k2�j0ik and j1 ��i ¼
�k2 ��j1ik with �� ¼ I n � for an arbitrary � � I. A basis,
in which a given state jc i is expanded as

jc i ¼ X
��I

h��j0�1 ��i; h� ¼ hc j0�1 ��i; (3)

is called a magic basis for jc i if hI � 0 and h �k ¼ 0 for all
k 2 I with �k ¼ I n fkg. By a suitable choice of the local
basis for each qubit, a magic basis can always be found.
For example we can construct a magic basis for a given
pure state jc i with the help of its closest product state
jpIi ¼ �k2Ijpkik whose inner product with jc i is the
largest among all possible product states. The closest prod-
uct state always exists, albeit difficult to find, and makes
the definition of the geometric measure of entanglement
[19] possible. Let j �pkik be the state orthogonal to jpkik for
each qubit k 2 I, then fjp� �p ��ig��I is a magic basis for

jc i. This is because jhIj2 > 0 and if there were a k 2 I
such that h �k ¼ hc jp �k �pki � 0 then, by introducing a nor-
malized single qubit state j�ik / h�I jpkik þ h��kj �pkik, we
would have jhc jp �k�kij2 ¼ jh �kj2 þ jhIj2 > jhIj2, which
contradicts the definition of the closest product state as
jp �k�ki is a product state. The magic basis for a bipartite
state coincides with its Schmidt decomposition. In general
the magic basis for a given pure state is not unique and the
one obtained from the closest product state only provides
us a possibility.
Under a magic basis for an entangled pure state jc i

there is at least one � � I such that h� � 0 and we
introduce a nonnegative integer

m ¼ max
�2C

j�j; C ¼ f� � Ijh� � 0g (4)

for each pure state. We refer to a subset A 2 C with
jAj ¼ m as a magic subset for jc i, which may not be
unique. For a magic subset A it holds hA � 0 while
hB ¼ 0 for any B � I with jAj< jBj< n. On the other
hand, in a magic basis of jc i if the collection C is not
empty then the state is entangled because local projection
to j0ik to each qubit k in a magic subset A will leave those
qubits in �A in a GHZ-like state with nonzero coefficients hI

TABLE I. Two measurement settings jaki ¼ ak0j0ik þ bk1j1ik and jbki ¼ bk0j0ik þ bk1j1ik
for each particle k 2 I for pure states in the Bell scenario m ¼ n� 2 (upper half) and the Hardy
scenario (lower half) m< n� 2. For each k 2 I state j �bkik ¼ �bk0j0ik þ �bk1j1ik is orthogonal
to jbkik.

ak0 ak1 bk0 bk1 �bk0 �bk1

k 2 A 1 0 � sin� cos� cos� sin� �
m ¼ n� 2k 2 �A 1 0 q r �r� q

k 2 A 1 0 ck z� 1 1� z� c�k
9=
;m< n� 2k 2 S 1 y 1 yz �yz� 1

k ¼ v e 1 �1 f f� 1
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and hA, which is obviously entangled. By the definition of
the magic basis we have m � n� 2.

If m ¼ n� 2, i.e., there exists A � I such that hA � 0
with jAj ¼ n� 2, we refer to this case as the Bell scenario.
In the upper part of Table I two measurement settings
fjaki; jbkig are specified for each qubit k 2 I with qubits
in A or �A having the same pair of measurement settings,

in which q ¼ ffiffiffiffi
�

p
=ð1þ �Þ and r ¼ ie�i�=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
with

� ¼ jhA=hIj> 0 and hA=hI ¼ �ei�. We then have
hHic ¼ jhIj2ð1� 2q2 � ðn� 2Þsin2�Þ � jhc j �bIij2 where

(see Supplemental Material [21])

hc j �bIi ¼ � hIe
i�

1þ �
cosm�þ Xm

k¼1

sink�cosm�k�

� X
��A

j�j¼m�k

�
r�2h�[ �A � r�q

X
v2 �A

h�[v þ q2h�

�
: (5)

If � ¼ 0 we already have a violation hHic j�¼0 ¼
jhAhIj2=ðjhAj þ jhIjÞ2 > 0 and in this case two measure-
ment directions for qubits in A become identical. To have a
nondegenerate pair of measurement settings we notice that

hHic is a continuous function of � and there exists some

small � � 0 such that hHic j�¼� > 0.

If m< n� 2, i.e., there exists A � I with jAj ¼ m such
that hA � 0 while hB ¼ 0 if m< jBj< n, we refer to this
case as the Hardy scenario because the state exhibits
Hardy-type nonlocality: the measurement settings can be
so chosen that only the first term in Eq. (2) is nonzero.
Consider the partition of the index set I into 3 disjoint
subsets I ¼ A [ S [ fvg with an arbitrary v 2 �A and jSj ¼
s ¼ n�m� 1 � 2. In the lower part of Table I we have
documented a family of measurement settings, with nor-
malizations neglected, determined by a real parameter
y � 0 and a complex parameter z � 1 together with
f ¼ hIy

�s=hA, e ¼ �hAy
sz=hI, and for k 2 A

ck ¼
X
k02S

hðAnkÞ[k0
yhA

þ hAnk
hA

� ys
hðAnkÞ[v

hI
z: (6)

Lengthy but direct calculations (see Supplemental
Material [21]) yield hc ja �kbki ¼ 0 for all k 2 I, hc jaIi ¼
yshAð1� zÞ, and

h �bIjc i ¼ ðh�A þ h�I ð�yzÞsfÞð1� zÞm þ X
��A;��S

ð�yzÞj�jð1� zÞj�jðh��[� þ fh��[�[vÞ
Y

k2A��

ck

¼ jhIj2
hA

ð�zÞsð1� zÞm þ X
ð�;p;u;i;tÞ2D

ytðsþ1Þþpþi�u��s�ð�Þ
puitð�zÞtþpð1� zÞm�u :¼ Xðmþ1Þs

k¼�m�s

ykLkðzÞ; (7)

where D ¼ fð�; p; u; i; tÞj0 � p � s; p � u � m; 0 � i � u; 0 � t � u� i; � ¼ 0; 1g and we have denoted

�ð�Þ
puit ¼

X
��A

j�j¼m�u

X
��S
j�j¼p

Gð�Þ
��

X
!1 ;!2�An�;!1\!2¼;

j!1 j¼t;j!2 j¼i

� Y
k2Anð�[!1[!2Þ

X
k02S

hðAnkÞ[k0
hA

�� Y
k2!1

hðAnkÞ[v
hI

�� Y
k2!2

hAnk
hA

�
(8)

with Gð0Þ
�� ¼ h��[� and Gð1Þ

�� ¼ hIh
�
�[�[v=hA. If we denote D0 ¼ fð�;p; u; i; tÞ 2 Dju� iþ �s ¼ tðsþ 1Þ þ pg then

L0ðzÞ ¼ jhIj2
hA

ð�zÞsð1� zÞm þ X
ð�;p;u;i;tÞ2D0

�ð�Þ
puitð�zÞtþpð1� zÞm�u :¼ Xn�1

k¼0

lkð�zÞk: (9)

We shall prove via reductio ad absurdum that there
exists nonzero y ¼ y0 such that the algebraic equation
h �bIjc i ¼ 0 of z has one root z ¼ z0 � 1. If all the roots
of h �bIjc i ¼ 0 were equal to 1 for any y � 0, then h �bIjc i
as a polynomial of z of degree mþ s ¼ n� 1 would be
proportional to ð1� zÞn�1 and thus all the coefficients
LkðzÞ, especially L0ðzÞ, would be proportional to
ð1� zÞn�1 since fyng1n¼�1 are linearly independent. On
the one hand we have ln�1 ¼ jhIj2=hA and ln�2 ¼ mln�1

for L0ðzÞ, taking into account the facts that n� 2>m and
the sum term in Eq. (9) as a polynomial of z is of the degree
at most m because tþ p � u in D0 since u � p for t ¼ 0
and u� t�p¼ iþðt��Þs�0 with � ¼ 0; 1 for t � 1.
On the other hand for ð1� zÞn�1 :¼ P

n�1
k¼0 l

0
kð�zÞk we have

l0n�2=l
0
n�1¼n�1>m¼ ln�2=ln�1, a contradiction.

Taking into account the normalization of jaIi and
parameters y0 and z0 determined above we can obtain the
desired violation

hHic ¼ jys0hAhIð1� z0Þj2
ð1þ y20ÞsðjhIj2 þ jys0hAz0j2Þ

> 0: (10)

Two measurement directions in Table I may become iden-
tical for a qubit k 2 A if ck ¼ 0, for all the qubits in S if
z�y2 ¼ �1, and for qubit v if f� ¼ e, i.e., �jhIj2 ¼
jhAj2y2sz. In these cases the degeneracy can be avoided
by replacing bk0 with bk0 þ x, where x is a real variable,
while keeping y0 and z0 unchanged. Since hHic depends

on x continuously and hHic jx¼0 > 0, there exists small �

such that hHic jx¼� > 0 while two measurement directions

are different for every qubit.
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To sum up, for a given entangled pure n-qubit state jc i
to violate Hardy’s inequality we need only to find a magic
basis and a magic subset A for jc i and choose one set of
the measurements defined in Table I according to whether
jAj ¼ m equals to n� 2 or not. For an example, the
n-qubit Dicke state jSki /

P
j�j¼kj0�1 ��i with 0< k< n

belongs to the Bell scenario in the magic basis
fjp� �p ��ig��I determined by its closest product state jpi�n
with jpi / ffiffiffi

k
p j0i þ ffiffiffiffiffiffiffiffiffiffiffiffi

n� k
p j1i and j �pi orthogonal to jpi.

The magic subset A is any subset of I with n� 2 elements.
Moreover, we have

h2I ¼ n
k

� �
kkðn� kÞn�k=nn

and hA ¼ �hI=ðn� 1Þ< 0 together with q ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
=n

and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � nþ 1

p
=n, which lead to a violation hHiSk ¼

h2I =n
2 in the case of degenerate measurement settings

�¼0. The GHZ-like state h�I j0Iiþh�;j1Ii with hIh; � 0,
which is already expanded in a magic basis with the magic
subset A ¼ ; and m ¼ 0, belongs to the Hardy scenario.
By taking y0 ¼ 1 the algebraic equation h �bIjc i / jh;j2 þ
jhIj2ð�zÞn�1 ¼ 0 has a nonunital solution z0 ¼
�ei	=ðn�1Þðjh;j=jhIjÞ2=ðn�1Þ, which leads to a violation as
given in Eq. (10). As the last example the pure n-qubit
state jc i / j0Ii þ j0�1 ��i þ j1Ii with � ¼ f1; 2g and
n ¼ 4jþ 1 for j � 1 belongs to both the Bell and Hardy
scenarios. First, the state is expressed already in a magic
basis and the magic subset is A ¼ � with m ¼ 2< n� 2
since n � 5. By taking v ¼ fng and y0 ¼ 1we have ck ¼ 0
for all k 2 A and f ¼ 1, e ¼ �z. Since z0 ¼ i is a root of
h �bIjc i / ð1� zÞ2ð1þ ð�zÞn�3Þ ¼ 0 we obtain a violation
hHic ¼ ð3� 2n�3Þ�1. Second, if j0i and j1i are exchanged
for each qubit then we obtain another magic basis with a
magic subset A ¼ �� with m ¼ n� 2; i.e., the state jc i
also belongs to Bell scenario with a violation hHic ¼ 1=12

since h �� ¼ hI ¼ 1=
ffiffiffi
3

p
.

Violation for qudits.—Now we consider n qudits, also
labeled with I, each of which may have a different number
of energy levels. For a given pure n-qudit state jc i a magic
basis can be defined similarly as in the case of qubits from
its closest product state jpIi ¼ �k2Ijpkik satisfying
jhc jpij2 � jhc jpIij2 for any product state jpi. We denote
by C the collection of � � I such that for each k 2 �� there
exists a qudit state j �pkik orthogonal to jpkik such that
hc jp� �p ��i � 0. As long as jc i is entangled the collection
C is nonempty and vice versa and therefore the integer
m ¼ max�2Cj�j is well defined such that (i) there exists
a magic subset A � I with jAj ¼ m such that hA ¼
hc jpA �p �Ai � 0 for some single qudit states j �pkik orthogo-
nal to jpkik for each k 2 �A with j �pi �A ¼ �k2 �Aj �pkik; and
(ii) for every subset B � I with m< jBj< n it holds
hc jpB� �Bi ¼ 0 for all single qudit states j�kik orthogonal
to jpkik for each k 2 �B with jpBi ¼ �k2Bjpkik and
j� �Bi ¼ �k2 �Bj�kik.

Also we have m � n� 2 because if there were k 2 I
such that h �k ¼ hc jp �k�ki � 0 for some qudit state j�ik
orthogonal to jpkik, then we would have jhc jp �k�

0
kij2 ¼

jhIj2 þ jh �kj2 > jhIj2 with normalized state j�0ik /
h�I jpkik þ h��kj�ik, which contradicts the definition of the

closest product state as jp �k�
0
ki is a product state.

For each qudit k 2 I we take jpkik to be j0ik and for
each qubit k 2 �A we regard j �pkik, as it appeared in the
definition of the magic subset A (item i), to be j1ik while
for each qubit k 2 A we take an arbitrary qudit state
orthogonal to jpkik to be j1ik. Thus we have picked out
two orthogonal states for each qudit with the help of which
we can locally project n qudits to an n-qubit subspace.
Within this local n-qubit subspace we have effectively a set
of n qubits in a projected state (not normalized in general)
in its magic basis with a magic subset A satisfying hB ¼ 0
as long as jAj< jBj< n. By choosing exactly the same
measurement settings as specified in Table I, we can obtain
the desired violation to Hardy’s inequality for an arbitrary
entangled pure n-qudit state.
Conclusions and discussions.—We have proved Gisin’s

theorem in its most general form: every entangled pure
state of a given number of particles, each of which may
have a different number of energy levels, violates one
single Bell’s inequality with two dichotomic observables
for each observer. Thus a strong equivalency between the
quantum entanglement and Bell’s nonlocality is estab-
lished for pure states. In this sense Hardy’s inequality is
a more natural generalization of CHSH inequality to multi-
particles. This is not surprising because Hardy’s argument
for nonlocality without inequality is de facto a state-
dependent proof of quantum contextuality, which should
manifest itself in any quantum state. It is argued in
Ref. [20] that the postselection problem in the approach
of Popescu and Rohrlich [5] can be circumvented. In
comparison we need only a single Bell’s inequality here.
It is of interest to find the maximal violation of Hardy’s
inequality by a given pure state.
We thank V. Scarani for bringing Ref. [20] to our atten-

tion and stimulating discussions. This work is supported by
National Research Foundation and Ministry of Education,
Singapore (Grant No. WBS: R-710-000-008-271) and NSF
of China (Grant No. 11075227).
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