
Orthogonality Catastrophe in Quantum Sticking

Dennis P. Clougherty* and Yanting Zhang

Department of Physics, University of Vermont, Burlington, Vermont 05405-0125, USA
(Received 16 December 2011; published 18 September 2012)

We show that the orthogonality catastrophe can dramatically affect the probability with which an

ultralow energy atom or ion will stick to a surface. We predict new energy-dependent scaling laws for the

sticking probability in this low-energy regime. We provide numerical results of this theory for the case of

ultracold electrons sticking to the surface of highly porous silicon and show that the sticking probability

can differ substantially from that calculated with perturbation theory. We then generalize our results for

finite surface temperatures and find surprisingly that the sticking probability can change sharply, vanishing

below a critical incident energy that varies with the surface temperature. We describe in detail this

superreflective surface phase for ultralow energy matter waves where the reflection coefficient is strictly

equal to one.
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Recent experimental advances in the manipulation of
ultracold atoms and molecules have provided new tools for
investigating fundamental concepts in quantum many-
body physics. Experiments with ultracold particles [1–3]
now go well beyond simple studies of matter wave inter-
ference and probe the nature of superfluids, superconduc-
tors, and Mott insulators. Ultracold particles present a
convenient way to probe the physics near quantum phase
transitions, as coupling strengths are experimentally ad-
justable in many cases.

We demonstrate that another major concept from many-
body physics—the orthogonality catastrophe—can also be
readily studied with physisorption of ultracold particles.
The orthogonality catastrophe, where the many-body
quantum ground state of the system has vanishing overlap
with its ground state in the presence of a localized inter-
action, figures prominently in the physics of the Kondo
effect [4], the x-ray edge problem [5], and decoherence in
Bose-Einstein condensates [6].

In this Letter, we show that the orthogonality catastrophe
affects physisorption rates at low energies and modifies the
probability that an ultracold atom or ion will stick to a
surface, a key quantity in many surface processes. This has
important applications to the emerging technologies based
on ultracold atoms, such as atom optics and quantum
information processing; for example, enhancing the reflec-
tion of matter waves from surfaces might be used to make
low-loss atomic mirrors [7], waveguides for atom interfer-
ometers [8] or microtraps for the quantum information
processing of ultracold atoms.

We show that the orthogonality catastrophe leads to a
new energy-dependent scaling law for the sticking proba-
bility and discuss how this law differs from previous
studies for the case of ultracold electrons adsorbed on the
surface of porous silicon. We then generalize our results
for finite surface temperatures and find surprisingly the
sticking probability changes sharply at a critical incident

energy. This singularity can be understood in terms of
channel localization of the ultracold particles, a quantum
phase transition that figures prominently in the dynamics
of dissipative quantum systems [9] at strong coupling.
We start by considering a previously used [10–16] one-

dimensional model that describes sticking for low energy
particles at normal incidence. The Hamiltonian is taken to be

H ¼ Hp þHb þHc; (1)

where

Hp ¼ p2

2m
þ V0ðzÞ; (2)

Hb ¼
X
q

!qa
y
qaq; (3)

Hc ¼ �V1ðzÞ
X
q

�ð!qÞðaq þ ayq Þ; (4)

and where V0 is the static surface potential seen by the
particle with mass m, !q is the energy of a surface phonon

with wave number q, and V1ðzÞ�ð!qÞ is the coupling of the
particle at z to the surface phonon with energy !q.

We can estimate the rate of sticking via one-phonon
emission using Fermi’s golden rule. We first consider the
transition matrix element hb; qjHcjk; 0i of the dynamical
particle-surface interaction, where jk; 0i denotes a state
with the particle in the continuum state with incident

energy E ¼ @
2k2

2m and the surface in its ground state with

no excitations; jb; qi denotes the particle in a bound state of
V0 and the surface has one excitation with wave number q.
If we choose the normalization of the particle wave

function such that it has unit amplitude far from the sur-
face, for a potential V0ðzÞ that decays faster than z�2 as
z ! 1, it is well known [10–15] that the amplitude of the
wave function near the surface scales as k. This is a result
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of quantum reflection, a wave phenomenon where the
incident particle is reflected from a surface without ever
having reached a classical turning point. Thus the ampli-
tude of the wave function tends to vanish near the surface
as the particle’s incident energy tends to zero. We conclude
that the transition matrix element for sticking vanishes in
proportion to k at low energies. This result follows for all
potentials that fall off faster than z�2 for large z and is
universal in this sense.

Within lowest order perturbation theory, the sticking
probability sðEÞ of a particle with incident energy E varies
as the square of the transition matrix element and inversely

with the incident particle flux. Hence, s / k2=k� ffiffiffiffi
E

p
.

This low-energy threshold law for quantum sticking was
implicit in work by Lennard-Jones and Devonshire [17] in
the pioneering years of quantum theory. With improve-
ments in the cooling and trapping techniques of ultracold

atoms, this
ffiffiffiffi
E

p
threshold law was found to be consistent

with experiment in the case of hydrogen sticking to the
surface of superfluid helium [18].

It has been asserted [10,14,19] that the
ffiffiffiffi
E

p
law holds

regardless of the form of Hc. We have shown [16] that theffiffiffiffi
E

p
law only holds for a class of dynamical couplings Hc,

determined by the low frequency behavior, in the same
fashion as models of quantum dissipation are classified by

their spectral functions. For super-Ohmic Hc, the
ffiffiffiffi
E

p
threshold law holds for neutral particles impinging on
zero temperature surfaces; however, for Ohmic couplings,
a different threshold law results. In essence, Hc contains a
final-state interaction that can alter the ground state of the
surface. This final-state interaction is responsible for an
orthogonality catastrophe for Ohmic coupling [16] that
subsequently alters the threshold law for quantum sticking.

At sufficiently low energies, we can ignore inelastic
scattering and approximate the particle state space by the
initial state jki and the final state jbi. In this truncated state
space, the Hamiltonian becomes

H ¼ Ecyk ck � Ebb
ybþX

q

!qa
y
qaq � ðcyk bþ byckÞVkb

�X
q

�ð!qÞðaq þ ayq Þ � cyk ckVkk

X
q

�ð!qÞðaq þ ayq Þ

� bybVbb

X
q

�ð!qÞðaq þ ayq Þ; (5)

where Vkb ¼ hkjV1jbi etc. The effects of the Vkk term in
Eq. (5) are of higher order in k than the Vbb term. We
consequently neglect the Vkk term in what follows.

The Vbb term is the final-state interaction responsible for
the orthogonality catastrophe for a certain class of
frequency-dependent couplings. The Hamiltonian for the
surface excitations has a different form in the initial parti-
cle state compared to the final particle state. Hence we need
to include in the transition matrix element that the surface

excitation in the final state is created from a different
ground state from the initial ground state of the surface.

The final state Hamiltonian of the surface, Hs;f ¼P
q!qa

y
qaq � Vbb

P
q�ð!qÞðaq þ ayq Þ, can be put in the

form of that of the initial state by a displaced oscillator
transformation. Such a transformation reflects that the
ground state of the surface in the presence of the bound
particle is polarized relative to the surface in isolation. To
within an arbitrary phase factor, the overlap of the ground
state of Hs;f with that of the isolated surface is

S � h0fj0i ¼ exp

�
�V2

bb

2

X
q

�2ð!qÞ
!2

q

�
: (6)

In the continuum limit, this overlap vanishes when

D ð!Þ�2ð!Þ �!; ! ! 0; (7)

where Dð!Þ is the density of surface excitations. In the
language of models of quantum dissipation, this condition
describes Ohmic coupling [9]. We have previously shown
[16] this form of coupling applies to the dynamical in-
teraction of the particle with phonons in an elastically
isotropic surface; for example, in the case of Rayleigh
phonons, � is independent of frequency [20], while
Dð!Þ / ! for these two dimensional surface modes.
Hence, for sticking via the emission of Rayleigh phonons,
the interaction is Ohmic. We also conclude that sticking
via emission of bulk phonons (or ‘‘mixed mode’’ phonons)
has an interaction that is Ohmic, since Dð!Þ / !2 and

� / !�ð1=2Þ.
In the golden rule estimate, the relevant transition matrix

element should have an excitation created out of the final-
state vacuum. This reduces the transition matrix element
by the Franck-Condon factor of Eq. (6), which in the
Ohmic case vanishes, signaling the breakdown of pertur-
bation theory. (We note that the dynamical coupling in the
case of ultracold atomic hydrogen sticking to superfluid
helium by ripplon emission is super-Ohmic and conse-
quently gives a nonvanishing Franck-Condon factor. We

expect the
ffiffiffiffi
E

p
law to hold in this case.)

In previous work [16], we calculated the sticking proba-
bility in the Ohmic case using a nonperturbative variational
scheme and found that the logarithmic divergence in the
Franck-Condon factor is cut off by a frequency scale !0

that depends linearly on the incident particle energy E at
sufficiently low energies. The low frequency cutoff !0

might be thought of as coming from the finite time needed
for the particle to make a transition to the bound state.
Excitations with frequencies below !0 do not have ade-
quate time to adjust to the presence of the bound particle
and do not contribute to the Franck-Condon factor.
We find it convenient to define the quantity F ¼ � lnS.

For weak Vbb,
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F � �

2

Z !c

c1E

d!

!
; (8)

where � ¼ lim!!0V
2
bbDð!Þ�2ð!Þ=!, c1 is a dimension-

less constant, independent of E and !c is the high-
frequency cutoff of the bath.

The truncation of the logarithmic divergence gives rise
to a new behavior for the sticking probability at threshold
for Ohmic systems.

sðEÞ / E1=2E� (9)

We have considered a variety of experimental conditions
to assess the likelihood that this new threshold law might
be observed. However, we have found that the shift in
exponent � is typically much smaller than one. Thus,
this new threshold law might prove very challenging to
verify experimentally. For charged particles sticking to
surfaces, we are however optimistic that the effects of the
orthogonality catastrophe on the sticking probability will
be accessible to experiment.

The threshold law for charged particles differs from that
of neutral particles. Charged particles are influenced by a
long-range attractive Coulomb interaction due to the
particle’s image charge, in contrast to the van der Waals
interaction exerted on neutral particles. The Coulomb po-
tential decays sufficiently slowly that a low-energy charged
particle does not experience quantum reflection [12]. The
amplitude of the wave function of the incident particle near

the surface scales as
ffiffiffi
k

p
as k ! 0. Hence, a naı̈ve applica-

tion of Fermi’s golden rule would predict that the sticking
probability sðEÞ of a charged particle with incident energy

E behaves as s / ð ffiffiffi
k

p Þ2=k� E0, a constant.
For the case of an Ohmic dynamical coupling, the

orthogonality catastrophe modifies this naı̈ve threshold
law for charged particles. The absence of quantum reflec-
tion for charged particles affects the energy dependence of
the low-frequency cutoff for the Franck-Condon factor,

with !0 scaling as
ffiffiffiffi
E

p
at low energies. For small �,

F � �

2

Z !c

c2
ffiffiffi
E

p
d!

!
; (10)

where c2 is a constant, independent of E. Thus, for charged
particles, we obtain

sðEÞ / E�=2: (11)

In contrast to the naı̈ve threshold law where the sticking
probability approaches a nonvanishing constant as E ! 0,
the orthogonality catastrophe drives the sticking probability
to zero.

It is a straightforward matter to extend this theory to
surfaces at finite temperature, and there are several new
features in the sticking probability that result. The Franck-
Condon factor is altered by thermal excitations in the bath

S ¼ exp

�
�V2

bb

2

X
q

�2ð!qÞ
!2

q

coth
�!q

2

�
; (12)

with the reciprocal temperature given by � ¼ 1=kBT.
There is a critical incident energy Ec, dependent on the

temperature T, below which the low-frequency cutoff !0

sharply drops to zero. As a result, the sticking probability is
a victim of the orthogonality catastrophe and vanishes for
E< Ec. Consider the exponent F of the Franck-Condon
factor at finite temperature for vanishing cutoff (!0 ! 0):

F� �T
Z
0

d!

!2
! 1: (13)

Thus the Franck-Condon factor sharply drops to zero and
the sticking probability vanishes for E< Ec (see Fig. 1),
creating what might be termed a ‘‘superreflective’’ surface
with perfect reflectivity below the critical incident energy.
This sharp change in the sticking probability has analogy
with the behavior of the tunneling probability in the
spin-boson model. There, the tunneling probability is re-
normalized to zero beyond a temperature-dependent criti-
cal coupling to the bath, defining the localization phase
boundary.
For the case of low surface temperature T � !0, we

recover the zero-temperature results of Eqs. (9) and (11)
to leading order in T; for the case of intermediate
surface temperature where TcðEÞ> T � !0, we find that

F / !�1=2
0 for sufficiently low � and energy. However at
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FIG. 1 (color online). The sticking probability of an electron of
energy E to the surface of porous silicon by the emission of a
Rayleigh phonon. The surface temperature is taken to beT ¼ 2 K.
The perturbative result using Fermi’s golden rule with a Franck-
Condon factor S ¼ 1 is given by (green) circles, while the varia-
tional mean-field result is given by (blue) stars. The variational
mean-field method gives a sharp transition at an incident energy
E � 1:6 mK. We take a porosity P ¼ 92:9%, giving a dielectric
constant � ¼ 1:2. The shear modulus of G ¼ 230 MPa and
Poisson’s ratio � ¼ 0:03 are calculated using Ref. [21].
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finite temperature, our variational calculations show that

!0 /
ffiffiffiffi
E

p
for neutral particles and

ffiffiffiffi
E4

p
for charged parti-

cles. Thus, we find for low-energy neutral particles with
E> Ec and intermediate surface temperatures

sðEÞ / ffiffiffiffi
E

p
expð�

ffiffiffiffiffiffiffiffiffiffiffiffi
E0=E

q
Þ; (14)

while for low-energy charged particles,

sðEÞ / expð�
ffiffiffiffiffiffiffiffiffiffiffiffi
E0=E

4

q
Þ; (15)

where E0 is an energy-independent constant and TcðEÞ
is the critical temperature above which !0 vanishes
(see Fig. 2).

The numerical results from our variational mean-field
theory for sticking are presented in Fig. 1 for the case of
ultracold electrons sticking to porous silicon at finite tem-
perature. We choose highly porous silicon for two reasons:
to remain in the regime where sticking occurs predomi-
nantly through one-phonon processes, the binding energy
must be small compared to!c, the high frequency cutoff of
the excitations; thus, we require a low dielectric constant.
Silicon with a porosity of 92.9% has a dielectric constant of
only � ¼ 1:2. Secondly, to maximize � in the case of
coupling to Rayleigh phonons, we seek materials that
have a low shear modulus and mass density. We expect
highly porous silicon to have a shear modulus of 230 MPa.

Our numerical calculations reveal a sharp transition in the
sticking probability at a critical energy of Ec � 1:6 mK.
Electrons with energy below Ec are predicted to be perfectly
reflected by the surface. Electrons with energy above Ec

stick to the surface with a probability reduced by roughly a
factor of five compared to the naı̈ve golden rule result.

In summary, on the basis of a variational mean-field
theory for the sticking of ultracold particles on a finite
temperature surface, we predict new scaling laws of the
sticking probability with incident energy at intermediate
surface temperatures. We also predict a dramatic downturn
of the sticking probability, with the probability vanishing
below a critical energy Ec. This new feature in the sticking
probability is a consequence of a bosonic orthogonality
catastrophe, where the Franck-Condon factor, resulting
from the surface polarization in the presence of the parti-
cle, vanishes for E< Ec. We predict that this effect is
experimentally accessible in the case of low energy elec-
trons impinging on porous silicon.
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FIG. 2 (color online). The sticking probability of an electron
(E ¼ 1 mK) to the surface of porous silicon by the emission of a
Rayleigh phonon as a function of the surface temperature T. The
(green) circles result from using Fermi’s golden rule with a
Franck-Condon factor S ¼ 1. The variational mean-field result
is given by (blue) stars. There is a dramatic downturn in the
probability at a surface temperature of T � 1:6 K, correspond-
ing to the vanishing of the Franck-Condon factor.
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