
Collective Predation and Escape Strategies

Luca Angelani*

CNR-IPCF, UOS Roma, Dipartimento di Fisica Università Sapienza, I-00185 Roma, Italy
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The phenomenon of collective predation is analyzed by using a simple individual-based model

reproducing spatial animal movements. Two groups of self-propelled organisms are simulated by using

Vicseklike models including steric intragroup repulsion. Chase and escape are described by intergroups

interactions, attraction (for predators) or repulsion (for preys) from nearest particles of the opposite group.

The quantitative analysis of some relevant quantities (total catch time, lifetime distribution, predation rate)

allows us to characterize many aspects of the predation phenomenon and gives insights into the study of

efficient escape strategies. The reported findings could be of relevance for many basic and applied

disciplines, from statistical physics, to ecology, and robotics.
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Introduction.—Chase and escape situations are wide-
spread in animal behavior in very different contexts, rang-
ing from a child’s game of tag to predation events in
species interactions. In many cases, a large amount of
organisms are involved, resulting in nontrivial dynamic
behaviors, such as the emergence of collective and coor-
dinated motions [1,2]. The search for efficient strategies is
usually of fundamental importance, being determinant in
enhancing the survival chance of single organisms or entire
populations. Animals adopt a large variety of escaping
strategies, ranging from a straight line flight from a pred-
ator to more complex behavior, e.g., running in zigzags,
performing intermittent locomotion, or jumping, just to
cite a few [3]. Very often, the same animal can also adopt
unpredictable escape behavior, choosing among different
preferred trajectories in a random fashion (for a recent
review on escape responses against predator attacks see
Ref. [4]). While much effort has been devoted to the study
of one-to-one predation [5], only recently has the role of
multiple predators and/or preys been investigated [6–16].
In order to study collective effects emerging in predation
phenomena, one can resort to individual-based numerical
models, in which each organism is represented by a parti-
cle following a few simple dynamics rules, such as erratic
free motion in a given space in addition to straight line
escape from a near predator. Such simplified models can be
useful to elucidate the emergence of some nontrivial be-
haviors and can be considered as a starting point for more
realistic modeling. In a recent paper, Kamimura and Ohira
[6] have introduced a lattice model (pointlike randomly
walking particles following simple dynamical rules, in-
creasing or decreasing the distance from nearest particle
of the opposite group) to analyze group spatial chase and
escape phenomena. Despite its simplicity, the model is able
to reproduce rich and interesting behaviors [7].

In this Letter, I will address the question of characteriz-
ing the statistical properties of predation phenomena, fo-
cusing on the efficiency of escape strategies. I will

introduce an individual-based off-lattice model, based on
the modeling of self-propelled organisms by Vicsek et al.
[17] and including chase-escape mechanisms through sim-
ple intergroup pairwise interactions and predation events
through the elimination of preys once caught by predators.
Unlike the Kamimura and Ohira model [6], the present
study allows us in a simple way the investigation of various
interesting situations, such as the presence of different
escape strategies, the case of different groups speeds, and
the role of alignment rules. By analyzing the statistics of
predation events (lifetime distributions and total catch
time), we provide evidence for the existence of two catch
regimes with different scaling behaviors, in agreement
with what was observed in lattice models [6]: a fast-catch
regime at a high predator concentration and a slow-catch
one at low concentration. The role of emerging collective
catch is particularly evident by analyzing the predation
rate. One observes ‘‘spike-like’’ events, corresponding to
cage trapping of a preys group by many predators converg-
ing on it. The main new finding of the present Letter
concerns the role of escape strategies in enhancing survival
probability for the prey. The optimal strategy is obtained by
considering a power-law weighted average of nearest pred-
ators, with the optimal power-law exponent around w ¼ 2.
A simplified mathematical model provides a simple expla-
nation of this fact. The reported finding can be of interest in
all the cases in which one has to find or explain escaping
strategies, from robotics [16] to animal behaviors.
The model.—We consider the following model. There are

two groups of organisms, predators or chasers (C), and preys
or targets (T). The number of chasers isNC (constant during
simulations) and the number of initial targets is NT ,
which can decrease over time due to catching events. Each
organism is described by position and velocity vectors in a
d-dimensional space (in the following, d ¼ 2). Simulations
will be performed in a box of length L with periodic bound-
ary conditions. Particles move at constant speed v0 and their
positions and velocities are updated according to Ref. [18]
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r iðtþ�tÞ ¼ riðtÞ þ viðtþ�tÞ�t (1)

v iðtþ �tÞ ¼ v0v̂
ðint:Þ
i ðtÞ; (2)

where i is the particle label and v̂ðint:Þ is a unit vector which is
determined by various intra- and intergroups interacting
terms:

v ðint:Þ
i ¼ R�½v̂ðal:Þi � þ �f

ðrep:Þ
i þ �f̂ðCTÞi : (3)

The first term describes the self-propulsion and alignment
effect

v ðal:Þ
i ¼ X

j2Sðal:Þ
i

vj; (4)

where the sum is over the particles of the same group
(including particle i)within a sphere of radius r0 surrounding
particle i. The effect of noise is described by the operatorR�

which performs a rotation of v̂ðal:Þi by a random angle uni-
formly distributed in the interval [� ��, ��] with � 2
½0; 1� [20]. The second term

f
ðrep:Þ
i ¼ X

j2Sðrep:Þ
i

fðri � rjÞ (5)

is a steric repulsive force preventing particle overlap, the sum
is over particles of the samegroupwithin a sphere of radius re
surrounding particle i, and f is a pair-repulsion force. In
Eq. (3), � measures the relative strength of this repulsive
term. The function f can be chosen in different ways, herewe
adopt the following [19]:

f ðrÞ ¼ r̂

1þ exp½ðr� rfÞ=�� ; (6)

where r ¼ jrj, rf set the length scale of repulsion (particles
size), and � the steepness. The last term in Eq. (3) describes
the chase or escape force (� quantifies its strength). We
choose the following form [6]

f̂
ðCTÞ
i ¼ pr̂iki ; (7)

where ki indicates the closest target (chaser) to any chaser
(target) within a radius rs (sighting radius) of organism i,
riki ¼ ri � rki , p ¼ �1 for chasers (pursuit of targets) and

p ¼ þ1 for targets (escape from chasers). We also consider
another form of the escape force for targets, obtained as a
weighted average over particles within the sighting radius

f ðTÞ
i ¼ X

k2Sðsight:Þ
i

hðrikÞr̂ik; (8)

where the sum is over chasers within a sphere of radius rs
surrounding target i and hðrÞ is a weight function. We will
consider here two kinds of weight: power law hplðrÞ ¼ r�w

and exponential heðrÞ ¼ e�kr. The parameter w (or k) de-
termines the escape strategy: for w ¼ 0, all the particles
equally contribute to the force, while for w � 1, only the
nearest particle contributes and the original form [Eq. (7)] is

recovered. The predation event is described by the elimina-
tion of target particles when they enter in the capture sphere
(of diameter rc) of a chaser. It is worth noting that we are
interested, here, in chase-escape phenomena at time scales
much shorter than the typical lifetime of single organisms,
thus, we will not consider processes like reproduction or
mortality [21–24].
The proposed simplified model describes organisms

which randomly move in a given space at constant
speed—avoiding overlap, Eq. (5), and potentially moving
in a swarm, Eq. (4)—and interact with the opposite group
through pairwise repulsive or attractive terms—Eqs. (7)
and (8). In real life, this corresponds to cases in which
predators chase the nearest prey, which responds to the
attack in the most simple way, performing straight line
escape from the nearest predator (or a weighted average
of neighboring ones) [4]. Despite its simplicity, the model
allows the study of a huge variety of possible situations, by
considering group-dependent values of the different pa-
rameters. In this analysis, we will consider cases in which
the only group-dependent parameters are the speed v0 and
alignment radius r0. Simulations are performed, updating
at each time step particle positions and velocities according
to Eqs. (1) and (2), using the following parameters values:
� ¼ 5, � ¼ 1:2, re ¼ 5, rf ¼ 1, � ¼ 0:5 (times are in the

unit of�t and length in the unit of rc). The relative strength
of the different terms in Eq. (3) has been chosen in such a
way to ensure the correct relative dominance in the follow-
ing order: nonoverlapping, chase or escape, and self-
propulsion. The values of the other parameters will be
indicated in the various analyzed cases. In the following,
we mainly report results obtained for the unbounded sight-
ing radius and the lack of alignment effect (r0 ¼ 0). See
Fig. 1 for a snapshot taken from simulation runs.

FIG. 1 (color online). Snapshot of a predator-prey configura-
tion from a simulation run. Black organisms are the predators,
red smaller ones are the preys.
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Results.—We first analyze how the total catch time T,
i.e., the time needed to catch all the preys, depends on the
number of predators. We study the case in which the preys
escape from the closest predators—Eq. (7)—and the preys
and the predators have the same speed, vT ¼ vC, for
which, in the simple one-to-one chase situation, the pred-
ator is unable to end the catch. In Fig. 2, the quantity T is
reported for different noise strengths (averaged over 104

independent runs). Contrary to the case of single predator,
the many chasers are able to complete the catch, due to the
cage trapping events (see below) and also to the waste of
time by the targets in deciding the escape direction when
chased by many predators [25]. As intuitively expected, the
time T is a decreasing function ofNC, the more the chasers,
the shorter the time needed to complete the catch.
However, there is an interesting crossover between at least
two power-law regimes: N�1

C at high chasers concentra-

tion, while a more steep decrease, N�2
C , at low concentra-

tion. The crossover is observed when the number of
chasers is about 5 times that of the targets, indicating
such a value is a lower bound to ensure a fast catch of all
the targets. We also note that there is a crossover region in
between, N��

C with 2<�< 5, that is more pronounced

when the noise is reduced. Similar results (two regimes
with the same scaling exponents and possible quantitative
differences only in the absolute T values or in the crossover
region) are obtained with different parameter values,
for example, considering alignment effects for targets
(r0 ¼ 5), finite sighting radius for both species (rs ¼ 10),
different targets number (NT ¼ 10, 20), or box length

(30 � L � 70). We note that a crossover between two
power-law regimes has been also observed in the case of
lattice models [6], however, with different power-law ex-
ponents. These results seem to indicate that the presence of
the two regimes is quite a general result, while quantitative
details seem to be model-dependent. Analyzing the dy-
namics in the single runs, it is evident that the two regimes
correspond to two different situations: when the chasers are
numerous enough, they are able to conclude the task after
few time steps (up to 100 or 200) from random initial
starting configuration (fast catch) while, when they are
few, some targets are able to escape from initial caged
configurations and the chase process (typically a group of
many predators chasing one or few targets [25]) lasts for a
longer time (slow catch). This is also evident by looking at
the distribution of a target’s lifetime, shown in the inset (a)
of Fig. 2 for NC=NT ¼ 7 (left curve, fast catch regime) and
NC=NT ¼ 1 (right curve, slow catch regime). In the latter
case, there is a double peak in the distribution, indicating
the presence of two subgroups of targets, those which are
captured after few steps and those which are able to fly off
and are captured after a long chase. It is worth noting that
the noise has the effect of decreasing the time T, disturbing
more the escape process of the targets (the change in the
velocity direction due to noise is fatal for the target chased
by many predators).
We now investigate the role of escape strategies and

their effect on the survival probability of the preys. In
principle, one should expect that considering the position
of many chasers, should give a better chance of finding the
optimal escape trajectory, especially when there are many
predators converging on the target. To quantify the effect,
we have considered different escape strategies, based on
the weighted average over close predators—Eq. (8). In
particular, we have analyzed how the total catch time T
depends on the parameter w or k in the considered weight
function hpl or he. In Fig. 3, the quantity T (averaged over

2� 104 independent runs) is reported as a function of the
target’s velocity in the fast catch regime for different w
values, compared to the original escape-from-the-nearest
strategy. It appears that the targets that escape, considering
the weighted average of predator directions, are able to
survive for a longer time, and the effect is more pro-
nounced for the faster targets. More specifically, the opti-
mal strategy is observed around the value w ’ 2, as it
evident in the inset of Fig. 3, where data referring to the
slow catch regime are also reported. A simple qualitative
explanation of the peak is the following. When the preys
escape from the closest predator (high w values), they are
unable to efficiently avoid other coming predators from
different directions, while considering unweighted average
(w ¼ 0), they are unable to escape from the most danger-
ous closest predator: the optimal strategy (w value) has to
be in between. A quantitative argument can be given con-
sidering a simplified mathematical model describing one
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FIG. 2 (color online). Time of catch T as a function of chasers
fraction NC=NT (NT ¼ 10, L ¼ 50). Data correspond to differ-
ent noise levels: from top to bottom � ¼ 0 (absence of noise),
0.2, 0.4, 0.6, 0.8, 1 (maximum noise). Dashed line refers to the
case NT ¼ 20, L ¼ 70, and � ¼ 0:2. Insets: (a) distribution of
target lifetime for the cases NC=NT ¼ 7 (left red curve) and
NC=NT ¼ 1 (right blue curve), both referring to the � ¼ 0:2
case (NT ¼ 10, L ¼ 50); (b) time dependence of the number of
targets NT obtained in four different simulation runs (NC ¼ 50,
L ¼ 100, � ¼ 0:0, vT ¼ 0:1, vC ¼ 0:06).
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prey chased by two predators (see discussion in
Supplemental Material [25]). By considering an exponen-
tial weight he, one also observes a peak (around k ¼ 1),
although with T values lower than in the previous case,
resulting in a less efficient escape (see right panel in the
inset of Fig. 3).

As stated above, a crucial role in the predation events is
played by a kind of coordination in the predators move-
ments, particularly evident when considering the case of
slow predators, for which there are no chances to succeed
in the catching events until a kind of coordinated motion is
achieved. In the inset (b) of Fig. 2, examples of time
evolution of the targets numberNT are reported as obtained
in four independent simulation runs, for the case vC ¼
0:6vT . Catching events are mainly ‘‘spike-like’’; i.e., they
are concentrated in very short time intervals, correspond-
ing to coordinated trapping of targets due to many chasers
which converge to the same spatial region from different
directions [25].

By including alignment rules in prey-prey interactions,
i.e., setting r0 > 0 in Eq. (4), we do not observe relevant
differences with respect to the case of no-alignment, at
least for what concerns catch times and predation rates.
This indicates that in our model there are no advantages in
escaping together, even though the pattern dynamics is
quite different due to the presence of swarms and flocking
phenomena [25]. The cooperative escape strategies ob-
served in nature may rely on other mechanisms not

included in the present model, for example, some kind of
confusing perception effect of predators when chasing
many preys moving together [26].
Conclusions.—Predation phenomena and escape strat-

egies have been analyzed through numerical simulations
by using a simple Vicsek-like individual-based model. Two
catch regimes are found (in agreement with previous lattice
models [6]) characterized by different lifetime distribution
of preys: a fast regime at a high predators to preys ratio and
a slow one when the ratio is less than about 5, which then
represents a lower bound to ensure a rapid and efficient
catch. We also demonstrate that predation is often charac-
terized by ‘‘spike-like’’ events, caused by cooperative cage
trapping of preys. The main result concerns the efficacy of
escape strategies: we find that the preys escape more
efficiently by considering a weighted (power-law) average
of neighboring predators, with an optimal weight exponent
w ¼ 2. The reported findings contribute to the enhance-
ment of the theoretical knowledge of collective and pre-
dation phenomena in animal behavior, and could be also
useful in applied disciplines, for example, to develop effi-
cient strategies in collective robotics.
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