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We propose a systematic methodology to construct a probabilistic epigenetic landscape of cell-fate

attainment associated with N-node Boolean genetic regulatory networks. The general derivation proposed

here is exemplified with an Arabidopsis thaliana network underlying floral organ determination grounded

on qualitative experimental data.
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Understanding how the information contained in genes
is mapped onto the organisms’ traits, or the phenotypes,
implies deriving a formal framework about the generic
aspects of developmental constraints on biological evolu-
tion. This remains one of the main challenges of theoretical
physical approaches to systems biology [1]. Crucial as-
pects of such mapping depend upon the topology and
dynamics of gene regulatory networks (GRNs) [2]. The
morphogenetic constraints derived from gene interactions
in such complex GRNs are reflected in what C. H.
Waddington called in 1957 the epigenetic landscape (EL)
[3]. Waddington initially proposed the metaphor of an EL
as an image of morphogenesis in which a developmental
process is represented by a ball rolling down along a
landscape with peaks and valleys. In the postgenomic era
it is now possible to pursue formal and quantitative deri-
vations of ELs that may be validated for experimentally
grounded GRNs. In the EL, the steady-state multigenic
profiles or attractors are found at the bottom of the basins,
and these profiles characterize each cell type or cellular
condition [2], with as many dimensions in the landscape as
the number of genes considered in the underlying GRN.
The relative size, shape, and distribution of the basins of
attraction in the N-dimensional hyperspace of gene con-
figurations restrict the patterns with which the system will
transit from one attractor to another in time and space. It is
assumed that random fluctuations move the ball along
different pathways until it reaches the bottom of a valley,
a final developmental or cell state. The need for mathe-
matical models of attractors and ELs associated to cellular
networks has been pointed out as one of the main out-
standing issues in systems biology and medicine [4,5].
Recent efforts have provided mathematical approaches to
analyze small gene circuits as dynamical systems. For
example, Wang and collaborators [6] have computed a
quasipotential landscape of the stochastic dynamics of
a well-studied two-gene case. However, simulation or

analytical approaches to derive and quantify EL for larger
networks that comprise developmental modules are still
lacking. In this Letter, we propose a method to construct a
probabilistic EL by calculating the probability distribution
of stable gene expression configurations arising from the
topology of a general N-node GRN. The core of the
method consists of two steps: first, the derivation of a
stochastic continuous system from a Boolean GRN, and
second, the definition of an analytically solvable Fokker-
Planck (FP) equation. This method is in principle appli-
cable to any finite-dimensional GRN. In this Letter, we first
put forward the general approach to derive the EL, and then
we apply it to the Arabidopsis thaliana floral organ deter-
mination GRN, which has been studied from alternative
perspectives before [7–9].
Derivation of a stochastic continuous system from a

Boolean GRN.—Consider a Boolean GRN defined by a
group ofN interacting nodes (genes, proteins, or other type
of molecule) and logical input functions, which formalize
experimental data on gene interactions. The state of gene i
at a given time is described by discrete logical relations
qiðtþ 1Þ ¼ Wi½q1ðtÞ; . . . ; qnðtÞ�. Here, the quantities qiðtÞ
are dichotomic variables representing the expression level
of node i, given as 0 or 1, while the input Wi is deter-
mined by logical propositions with a Boolean structure.
According to Kauffman’s proposal, the equilibrium states
given by the fixed-point condition qiðtþ 1Þ ¼ qiðtÞ � qsi
correspond to the phenotypes or cell types determined
by a GRN.
In order to derive the stochastic continuous system, we

first need to describe the Boolean GRN as a continuous
system. Several approaches have been used for this pur-
pose [7,10–12]. For that sake, in this Letter, we replace the
original set fqig in terms of a set of continuous variables ~qi
(0 � ~qi � 1) which satisfies Zadeh’s rules [13] of fuzzy
propositional calculus: qi or qk ! max½~qi; ~qk�, qi and
qk ! min½~qi~qk�, not qi ! 1� ~qi. It is straightforward to
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show for ~qi ’ 0 or 1, Zadeh’s algorithms define a Boolean
algebra [13]. Using these replacements, for each sate vari-
able i (e.g., gene), we derive a function wið~qÞ which
expresses with continuous variables the way its regulators
interact. For simplicity, in the following we omit the tilde
over qi. We provide a dichotomic structure to the continu-
ous GRN inputs by introducing steplike (differentiable)
activation functions

�½wi� ¼ 1

exp½�2bðwiðqÞ � wthr
i Þ� þ 1

; (1)

where wi is the input function for node i, w
thr
i is a threshold

level, and b the input saturation rate. In particular, for
b � 1, �½wi� becomes a Heaviside step function.

The stochastic continuous system can then be described
by means of Langevin equations [14,15]

dqi
dt

¼ �½wiðqÞ� � �iqi þ �i: (2)

Here, �½wi� represents activation of node i, �i its relaxa-
tion rate, and �i is a random variable with ensemble
average h�iðtÞi ¼ 0, and time-dependent correlation
h�iðtÞ�kðt0Þi ¼ Qik�ðt� t0Þ. We assume that Qik ¼ Q�ik,
so that fluctuations pertaining to different variables are
uncorrelated.

In absence of fluctuations, the steady states of the con-
tinuous GRN are determined by the condition dqi=dt ¼ 0,
leading to qsi ¼ �½wi�=�i, so that q

s
i ¼ 0 or 1=�i, depend-

ing on the specific set of initial conditions qið0Þ. Because
the inputs wi satisfy a Boolean algebra, the attractor sets
obtained in the continuous approach result in values
equivalent to those derived in the discrete logical approach
(they coincide for �i ! 1), with the possible exception of
those arising from qsi ¼ 1=2 (see Ref. [16]). By introduc-
ing the noise term again in the dynamics, the formal
solution of (2) is

qiðtÞ ¼ qið0Þe��it þ
Z t

0
dt0e��iðt�t0Þ�½wiðqðt0ÞÞ� þ �iðtÞ

(3)

with �iðtÞ ¼
R
t
0 dt

0e��iðt�t0Þ�iðt0Þ. It follows that the state

variables may be expressed as qi ¼ hqii þ �i, where the
ensemble average

hqiðtÞi ¼ qið0Þe��it þ
Z t

0
dt0e��iðt�t0Þh�½wiðqðt0ÞÞ�i: (4)

A Taylor expansion shows that in the small-noise limit
h�½wiðqÞ�i ’ �½wiðhqiÞ� [up to terms Oð�2Þ], which we
introduce in (4). We now employ Haken’s adiabatic hy-
pothesis [15], which involves considering that the state
variables react instantaneously to the orders dictated by
�½wiðhqðtÞiÞ� at the actual time t, not depending on the past
history of the system. In that case the function �½wi� may
be extracted out from the integral in (4), which leads to

hqiðtÞi ’ qið0Þe��it þ 1

�i

�½wiðhqðtÞiÞ�ð1� e��itÞ: (5)

The adiabatic approximation has been checked numerically
for Eq. (4) with reasonable accuracy. We observe that for
t � 1=�i, hqii ¼ qsi ¼ �½wiðhqsiÞ�=�i. Following similar
steps, it may be shown that the mean square fluctuations
hq2i ðtÞi � hqiðtÞi2 ’ Qð1� e�2�itÞ=�i.
The FP equation.—To study the temporal evolution of

the probability distribution of the stochastic continuous
system, we introduce the FP equation @pðq; tÞ=@t ¼
�rq � J, where pðq; tÞ denotes the probability distribution

for genetic expression, and

Ji ¼ f�½wiðqÞ� � �iqigpðq; tÞ � 1

2

XN
k¼1

Qik

@pðq; tÞ
@qk

; (6)

the probability flux within the N-dimensional configura-
tion space. The continuous representation of the input
functions (1) enables the use of a logistic activation func-
tion that is constant at equilibrium, thus yielding an effec-
tively linear drift. An analytical dynamical solution of the
FP equation can be found in the present case with a linear
drift vector and constant diffusion tensor; the solution
hence acquires a Gaussian structure:

pðq; tÞ ¼ N ðtÞ exp
�
�XN

i¼1

ðqi � hqiðtÞiÞ2
aiðtÞ

�
; (7)

where hqiðtÞi is given by (4), the distribution width

aiðtÞ ¼ Q

�i

ð1� exp½�2�it�Þ þ aið0Þ exp½�2�it� (8)

with initial value aið0Þ, and the normalization function

N ðtÞ ¼ ��N=2½�N
i¼1aiðtÞ��1=2. Notice that for aið0Þ!0,

aiðtÞ coincides with the mean square fluctuations arising
from the Langevin approach, whereas for t � 1=�i

aiðtÞ ! asi ¼ Q=�i.
Attractor transitions in the EL.—In the spirit of

Waddington’s original metaphor we characterize the
probabilistic transit through the EL by constructing the
transition probability distribution between neighboring ba-
sins of attraction: n ! m. We assume that the system is
initially described by the probability distribution
�N

i¼1�½qi � qið0Þ�, with negligible dispersion aið0Þ ! 0,
and the point qið0Þ located at a basin n centered

at qsðnÞi . Because of the stochastic dynamics, the
system spreads over the basin n and subsequently

transits to a basin centered at qsðmÞ
i . With the distribution

(7) we can derive the transition probability distribu-
tion pnm¼N nmexp½Piðqi�hqiinmÞ2=anmi �, where

hqiiðnmÞ ¼qsðnÞi e��itþqsðmÞ
i ð1�e��itÞ, the width anmi ¼

Qð1� exp½�2�it�Þ=�i þ asðnÞi exp½�2�it�, and the nor-

malization N nm ¼ ��N=2½�ia
nm
i ��1=2. We finally ex-

press the EL probability distribution as a superposition
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pnðq; tÞ ¼
P

mgmp
nmðq; tÞ, where n denotes the starting

EL basin, and gm the probability to occupy the basin m.
This last probability is estimated as the relative size of the
basins gn ¼ �n=�. where�n correspond to the number of
alternative sets of initial conditions leading to a given

attractor qsðrÞi , and � ¼ 2N to the total number of initial

conditions of the original Boolean GRN.
This derivation provides a novel analytical dynamical

solution of the GRN stochastic dynamics that yields ex-
plicit expressions for the temporal evolution of the proba-
bility distribution of gene states, and for the transition
probability distribution between neighboring attraction ba-
sins. We refer to such derivations as the probabilistic EL, as
they allow us to explore the temporal evolution of the
probabilities of the cell being in each cell state (e.g.,
gene configuration), and the probability of transition to
another cell state, given an initial state. One of the virtues
of this expression is that its Gaussian structure enables us
to derive a reduced N �D-dimensional Gaussian distribu-
tions by integrating (7) over D-state variables. As a con-
sequence, we also have a method which allows us to focus
the probabilistic description on a subset of the more rele-
vant state variables. The latter may be chosen based on
dynamical or biological considerations, for example, the
GRN nodes are known to have a strong influence on the
phenotype when mutated, or either slow modes, i.e., vari-
ables with the lowest relaxation rates which have been
shown to drive the emergent dynamics of self-organized
systems [15].

Example: Arabidopsis thaliana flower organ identity
GRN.— These tools may be applied to well-defined GRN
consisting of a set of genes and a defined Boolean input
function for each genes’ regulators. In particular, we study
the GRN dynamics leading to floral organ determination in
Arabidopsis thaliana. The main features of floral develop-
ment in Arabidopsis and its underlying 15-node GRN are
summarized in Fig. 1 (adapted from Ref. [7]); they are
thoroughly described in Ref. [17]. An updated table for
logical expressions for GRN interactions is presented in the
Supplemental Material [18]; this network definition is the
starting point. From the logical expressions for the net-
work, it is straightforward to replace each state variable
using Zadeh’s rules, and derive the continuous function
wið~qÞ as described above. Given this transformation and
the specification of parameters Q and �i, we can use the
analytical expressions derived above to follow the tempo-
ral evolution of the EL probability distribution from an
initial configuration. For this case, we focused the proba-
bilistic description on a small enough subset of the state
variables so that we could provide a graphical representa-
tion of the temporal evolution. Following our method, this
is done by integrating (7) over those D-state variables
which will not be the focus of the description. For this
specific case, we chose the variables of interest based on a
dynamical consideration. Specifically, we first derived the

attractor sets by applying Boolean algebra rules, and then,
based on these sets, we eliminated those variables which do
not play a central role in the GRN. The analytical deriva-
tion of the attractors is presented in the Supplemental
Material [18]. The attractors and basins could also be
derived with numerical simulations. The final expressions
for the GRN attractors are tabulated in Table I, which
indicate that the gene expression patterns for the inflores-
cence meristem (IM) and the floral meristem (FM) in
Arabidopsis are uniquely determined by only five tran-
scription factors: LFY, UFO, WUS, AP3, and AG.
According to Table I, the gene configuration space is split
into two quasi-independent subspaces depending on the
values LFY ¼ 0 or LFY ¼ 1, so that LFY becomes the
central regulator of the GRN. The two subsets are charac-
terized by the expression values of UFO and WUS, and

FIG. 1 (color online). Flower development and gene network
underlying primordial floral organ cell-fate determination in
Arabidopsis thaliana [7,17]. (a) Mature flower of wild-type
Arabidopsis. (b) GRN topology. Circles correspond to genes,
while arrows and bars correspond to positive and negative
regulatory interactions, respectively. (c) Inflorescence meristem
(IM). Four regions denoted as I1, I2, I3, and I4 from outer to
inner circles can be distinguished. Flower meristems arise from
the flanks of the IM (1, oldest; 5, youngest). (d) Young flower
meristems are subdivided into four concentric regions that will
eventually develop into mature flower organs: sepals (se), petals
(pe), stamens (st), and carpels (car). (e) and (f) GRN attractors
for IM and FM meristems, respectively. Expressed and nonex-
pressed genes are represented in by gray circles and white
circles, while black circles represent a gene (UFO) that can be
either expressed or not expressed.
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AP3 and AG, respectively. For LFY ¼ 0, UFO and WUS
induce four IM attractors depicted in Fig. 1: I1, I2, I3, and
I4. Similarly, for LFY ¼ 1, AP3 and AG induce four FM
attractors: se, pe2, st2, and car, for UFO ¼ 0, and two
additional attractors, pe1 and st1, for UFO ¼ 1. Notice

that for a fixed expression of UFO, the four floral organs
are completely specified by the 22 different combinations
of the expression values of AG and AP3. It may be verified
that these and other different predictions inferred from
Table I show an excellent correspondence with experimen-
tal observations on Arabidopsis compiled in Ref. [17].
The former results allow us to consider the reduced

probability distributions on the 2D subspaces expanded
by UFO and WUS, and AP3 and AG, and eliminate the
other variables by integration. We assigned a small level of
noise for Q � 10�2, while for the decay rates of UFO and
WUS we assumed (in absence of experimental informa-
tion) that �UFO ¼ �WUS ¼ 1; concerning AP3 and AG,
experimental measurements indicate that �AP3 >�AG

[19]. This latter consideration induces asynchronous tran-
sitions between the EL attraction basins and thus defines a
temporal ordering for floral organ attainment.
We present in Fig. 2 the most probable temporal dynam-

ics associated to floral expression under the assumption
that the distribution function is originally set at the sepal

TABLE I. Steady-state values of the gene regulatory network
(GRN) as given by the Boolean logical rules. The explicit value of
the steady states are given by substituting at the right-hand side the
possible input values (0 or 1) of the GRN-state variables. Boolean
expressions are recovered from the substitutionmax½qi; qk� ! qi
or qk, min½qi;qk�!qi and qk, 1� qi ! not qi.

LFY ¼ LFY
FUL ¼ min½AG;LFY� FT ¼ LFY
AP1 ¼ min½1� AG;LFY� AP2 ¼ LFY
WUS ¼ min½WUS; 1� AG� TFL1 ¼ 1� LFY
AG ¼ min½LFY;max½AG;WUS�� EMF1 ¼ 1� LFY
PI ¼ min½LFY;max½AG;AP3�� SEP ¼ LFY
AP3 ¼ min½LFY;max½AP3;UFO�� UFO ¼ UFO
CLF ¼ 1 LUG ¼ 1

FIG. 2 (color online). Temporal evolution (t1 ! t6) of the EL
probability distribution on the floral organ domain expanded by
AP3 and AG. The system is originally set at the sepal basin
(AP3 ¼ 0, AG ¼ 0). Afterwards, the system transits, first, to the
petal basin (AP3 ¼ 1, AG ¼ 0), and subsequently to the stamen
(AP3 ¼ 1, AG ¼ 1) and carpel basins (AP3 ¼ 0, AG ¼ 1), as
empirically observed in Arabidopsis thaliana flower develop-
ment (see Ref. [7]).

FIG. 3 (color online). Probabilistic ELs for wild-type (a) and
loss-of-function mutants: AP1 ¼ 0 (b), AP3 ¼ 0 (c), and
AG ¼ 0 (d).
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basin. We observe that, starting at the sepal basin, the
system first transits to the petal basin (even though it is
smaller than those of stamens and carpels), and subse-
quently, to the stamen and carpel basins, in agreement
with the temporal development pattern of floral organs
attainment in A. thaliana and most flowering species.
This temporal ordering is insensitive to the specific values
of �i as far as the inequality �AP3 >�AG holds. The
temporal order in flowering had been previously addressed
in Ref. [7] using an alternative scheme based on discrete-
time Markov chains.

We have further validated the model by exploring the EL
associated to loss-of-function mutants of the so-called
ABC model (see Ref. [7] for details). Mutations are simu-
lated by settingAP1 ¼ 0 (A mutant),AP3 ¼ 0 (B mutant),
and AG ¼ 0 (C mutant) in the logical rules appearing in
Table I. We present in Fig. 3 the probabilistic ELs with
corresponding images of the wild-type and loss-of-
function mutants of Arabidopsis. In addition to validating
our model, such mutant analysis provides an explanation
for a morphogenetic constraint observed in ABC mutants,
namely, those pairs of contiguous verticils that are trans-
formed in homeotic ABC mutants.

In conclusion, we have put forward an analytical deriva-
tion of the probabilistic EL for an arbitrary N-dimensional
GRN grounded on experimental data. We have exemplified
our method with Arabidopsis thaliana floral organ GRN.
The methods proposed here successfully recovered the
steady-state gene configurations characteristic of primordial
cells of each floral organ type inwild-type andABCmutants.
In addition, we recovered the observed temporal pattern with
which these configurations are attained in real flowers.
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