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R. Wiesendanger,6 and M. Morgenstern7

1Department of Physics, Tohoku University, Sendai 980-8578, Japan
2JST, ERATO Nuclear Spin Electronics Project, Sendai 980-8578, Japan
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Scanning tunneling spectroscopy is used to study the real-space local density of states of a two-

dimensional electron system in a magnetic field, in particular within higher Landau levels. By Fourier

transforming the local density of states, we find a set of n radial minima at fixed momenta for the nth

Landau levels. The momenta of the minima depend only on the inverse magnetic length. By comparison

with analytical theory and numerical simulations, we attribute the minima to the nodes of the quantum

cyclotron orbits, which decouple in a Fourier representation from the random guiding center motion due to

disorder. Adequate Fourier filtering reveals the nodal structure in real space in some areas of the sample

with relatively smooth potential disorder.

DOI: 10.1103/PhysRevLett.109.116805 PACS numbers: 73.43.�f, 73.22.�f, 73.20.At

Directly mapping the wave functions of electrons gives
the most pertinent access to the quantum mechanical prop-
erties of matter [1–5]. Under a perpendicular magnetic field
B in two-dimensional electron systems (2DESs), self-
interference of the circular electronic orbits leads to a
standing wave pattern of probability density, as first calcu-
lated by Landau [6]. The kinetic energy becomes quantized
into discrete Landau levels (LLs) En ¼ @!cðnþ 1

2Þ, with
!c the cyclotron frequency, @ Planck’s constant, and
n ¼ 0; 1; 2; . . . characterizing the number of nodes in the
LL wave functions. Experimental observation of this nodal
structure has until now remained elusive. The 2DESs are
usually deeply buried in semiconducting heterostructures,
which prevents the use of high resolution scanning tunnel-
ing spectroscopy (STS). Recently, the advent of surface
2DESs in doped semiconductors [7–9], graphene [10,11],
and on the surface of topological insulators [12,13] has in
principle opened the way to such direct high resolution
measurements. This should allow probing the internal
structure of the LL wave functions.

However, the Landau energy levels are highly degener-
ate, so that the associated wave functions will be strongly
disturbed by any perturbation such as disorder. One has,
thus, to deal with the inherent complexity of disorder in
spectroscopic measurements. More fundamentally, disor-
der is crucial for the understanding of universal quantized
Hall conductance [14] in 2DESs. At high magnetic field,
disorder essentially lifts the LL degeneracy keeping n as a

good quantum number due to the large cyclotron gap. The
electronic motion is then largely decomposed into an in-
dependent fast cyclotron orbit and a slow drifting motion
of the guiding center along equipotential lines of the
smooth disorder landscape. Most of the equipotential lines
in the bulk being closed, this picture provides a simple
localization mechanism that ensures a reservoir of local-
ized electronics states between LLs, ultimately responsible
for the formation of wide quantized plateaus of Hall con-
ductance [6]. This semiclassical picture was recently con-
firmed by STS real space imaging of the electronic
probability density [8,11]. The latter density was found
in the lowest LL, LL0, to follow equipotential lines with a

transverse spread on the scale of the magnetic length lB ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=jejBp

. Within the higher LLs, LLn for n > 0, the drift
motion is expected to be accompanied by larger cyclotron

orbits characterized by the quantum Larmor radii Rn ¼
lB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
. This larger spread of the meandering LL wave

functions in the transverse direction to the guiding center
motion should contain signatures of the LL nodal structure
for n � 1. Note that these nodes can be related to phase
singularities of LL wave functions with n a winding num-
ber [15,16]. This topological origin confers some robust-
ness to the nodal structure which should be viewed as a key
property of quantum Hall states. The purpose of this Letter
is to show how to reveal these interference effects.
The quantum states in disordered LLs are delicate to

analyze in detail, because drift and cyclotron motion are,
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strictly speaking, not disentangled. We will show that a
useful spectroscopic analysis can still be made by two-
dimensional (2D) Fourier transform of the STS data, which
allows us to deconvolute the contribution from the discrete
LL orbits and from the disorder induced drift motion. The
nodal structure of LLn is revealed by a succession of n
ringlike patterns in momentum space, given by a set of
fixed and disorder-independent minima within the momen-
tum scale Rn=l

2
B. Analytical and numerical calculations

are performed to vindicate our findings. Moreover, a
methodology to show the nodal structure in real space is
demonstrated.

The 2DES was prepared by 1% monolayer Cs
adsorption on an n-type InSb(110) surface [17] with
donor (acceptor) density ND ¼ 9� 1021 m�3 (NA ¼ 5�
1021 m�3) [8]. The STS measurements [8] were per-
formed in ultrahigh vacuum at B ¼ 6 T and temperature
T ¼ 0:3 K [18]. Figures 1(a)–1(g) show images of the
differential conductivity dI=dV recorded within the same
spatial area for seven different sample voltages Vs span-
ning the four spin-split LLs from LL0 to LL3 [see the
spatially averaged dI=dV curve shown in Fig. 1(h)]. These
spatial maps represent the local density of states (LDOS)
consisting of all wave functions at energy E ’ eVs within
the experimental energy resolution of 2.5 meV [8,19], see
discussion in Ref. [20]. In the lower tail of LL0 [Fig. 1(a)],
several spatially isolated closed loops are visible, which
correspond to individual localized states encircling poten-
tial minima as shown in Ref. [8]. The same states are
visible within the lower tail of the higher spin level of
LL0 [Fig. 1(b)], however, superimposed to the states

marked by white crosses which belong to the upper tail
of the lower spin level and encircle potential maxima.
Similar patterns are found at the same positions in the
lower tail of higher LLs [marked by arrows for LL1 in
Fig. 1(c) and LL3 in Fig. 1(g)], but they are spatially wider
and are, thus, more difficult to discriminate. The widening
of the drift states marks the progressive increase of Rn

with n. Careful inspection of the localized states in the
LL’s lower tail [Figs. 1(a), 1(c), and 1(g), see arrows] and in
the upper tail [Figs. 1(b), 1(e), and 1(f)] reveals that the
closed loops exhibit more complex oscillatory patterns
perpendicular to the loop in higher LLs.
In order to relate the oscillatory features to the nodal

structure of the LL wave functions, we first overcome the
difficulty that the cyclotron motion is randomly correlated
to the guiding center motion. This partly masks the nodal
structure within our real-space data. Note that LL mixing
would also blur this structure. However, in the present
experimental conditions (large cyclotron gap and smooth
disorder, see Ref. [8]), LL mixing plays a negligible role
(see discussion in Ref. [20]). In this case, previous works
[21–23] have demonstrated an exact decomposition of the
LDOS as a function of position r and energy E:

�ðr; EÞ ¼
Z d2R

2�l2B

Xþ1

n¼0

FnðR� rÞAnðR; EÞ: (1)

Here,weneglect, for the sake of simplicity, thermal smearing
effects and the experimental energy resolution, which could
be implemented straightforwardly. AnðR; EÞ corresponds to
the guiding center spectral density inLLn, which encodes the
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FIG. 1 (color online). (a–g) Real-space LDOS taken at B ¼ 6 T for the sample voltages Vs marked as circles in (h); measurements
are done by lock-in technique with the modulation voltage Vmod ¼ 1 mV after stabilizing the tip at a current Istab ¼ 0:1 nA and a
sample voltage Vstab ¼ 150 mV; all dI=dV images are recorded in the same area and are displayed using the same color scale; values
of the chosen sample voltage are: Vs ¼ �117 mV (a), �103 mV (b), �79 mV (c), �73 mV (d), �57 mV (e), �29:4 mV (f),
�23:1 mV (g). White arrows at the same positions in (a), (c), (g) mark localized states, which exhibit additional nodal structure
in (c), (g). Crosses in (b), (e), and (f) mark states localized at potential hills; the dashed rectangle in (b) marks an area around a drift
trajectory. (h) Spatially averaged dI=dV curve using the 1600 curves recorded in the area of ð350 nmÞ2; dashed lines: Gaussian fits to
the two spin levels of LL0.
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complicated dynamics induced by the disorder. The key
object in Eq. (1) is the so-called structure factor

FnðRÞ ¼ ð�1Þn
�l2B

Ln

�
2R2

l2B

�
e�R2=l2B ; (2)

where LnðzÞ is the Laguerre polynomial of degree n
containing n oscillations (or, equivalently, nodes).

The structure factor FnðRÞ is not strictly positive and,
while associated with the quantum cyclotron motion in
LLn, cannot be interpreted directly as the wave function
probability density. Instead, FnðRÞ corresponds to a
Wigner distribution [22], because the physical real space
of the guiding center coordinates R ¼ ðX; YÞ is in fact
associated to a pair of quantum conjugate variables [24],

owing to the commutation relation ½X̂; Ŷ� ¼ il2B. The con-
volution given by Eq. (1) illustrates the difficulty in resolv-
ing in real space the nodes of the Landau states that are
built in the structure factor. Indeed, the sharp nodal struc-
ture ofFnðRÞ is not only blurred in �ðr; EÞ, but the smeared
nodal patterns must also follow the random meanders of
the guiding center trajectories encoded in AnðR; EÞ.
However, by performing a 2D Fourier transformation
(FT) of the LDOS, a simpler product form is achieved,

~�ðq; EÞ ¼ Xþ1

n¼0

~FnðqÞ ~Anðq; EÞ; (3)

where the FT of the structure factor reads:

~F nðqÞ ¼ Ln

�
l2Bq

2

2

�
e�l2Bq

2=4: (4)

For a smooth disorder potential characterized by a

large correlation length � � lB, ~Anðq; EÞ possesses

disorder-induced structures mainly at short wave vectors
jqj ’ 2���1, and should barely vary around the larger
momentum scale jqj ’ Rn=l

2
B / 1=lB. Thus, distinguish-

able momentum variations in the FT of the LDOS (3)
should arise from the universal structure factor (4). We
now examine this issue both using our STS data and
numerical simulations of a disordered 2DES at high B
field.
In order to reveal the nodal structure of LLs in momen-

tum space encoded into ~FnðqÞ, we proceed with the FT of
the LDOS images of Figs. 1(a) (LL0), 1(c) (LL1), 1(f)
(LL2), and 1(g) (LL3). Since the FT of the LDOS displays
sign changes due both to the structure factor and to the
random spectral density in momentum space, we focus our
discussion on the absolute value of the FT signal. We also
use a voltage averaging of 2 mV of the data in order to
improve contrast. The upper insets in Figs. 2(a)–2(d) illus-
trate the resulting Fourier-transformed LDOS (FT-LDOS)
images. They exhibit a single radial modulation for LL1,
changing into double (LL2) and triple (LL3) radial modu-
lations at the jqj positions marked by dashed half circles. In
order to smoothen the random contributions of the spectral
density, we perform an angular average of the signal as
shown by the curves (thick red lines) in Figs. 2(a)–2(d). A
consequence of this angular averaging is that deviations
from perfect angular symmetry and noise within the
experiments will add up to a (possibly q-dependent) finite
background. Therefore the expected zeros from the struc-
ture factors are shifted upwards and become minima. At
LL0 [Fig. 2(a)], the resulting FT curve decreases mono-
tonically, composing a disk structure in the FT-LDOS
(upper inset). However, at LL1 [Fig. 2(b)], the FT curve
exhibits a dip at jqj ¼ 0:16 nm�1 followed by a broad
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FIG. 2 (color). (a)–(d) Logarithmic absolute values of angular-averaged Fourier transformation (FT) of LDOS obtained in the tail of the
LLs; thick red lines: experimental data taken from the LDOS of Figs. 1(a) (LL0), 1(c) (LL1), 1(f) (LL2), and 1(g) (LL3); voltage
averaging: 2 mV; thin black lines: FT of numerical simulations for an energy in the tail of the Landau band, E ¼ @!cðn� 0:4þ 1=2Þ.
The curves are stretched along the y axis in order to match at q ¼ 0 nm�1. Insets: FT-LDOS; upper panels: experiment with dashed half
circles indicating q of simulated LDOS minima, lower panels: simulations. (e) Angular-averaged FT-LDOS of LL1 with (red curve) and
without voltage averaging as derived from Figs. 1(e) (black), 1(d) (blue), and 1(c) (green). (f) Comparison of absolute Fourier-
transformed structure factor j ~FnðqÞj (shifted vertically for clarity) as given in Eq. (4) (black lines) and discrete mimima of the curves in
(a)–(d); red circles: experiment; blue triangles: simulation; black arrow marks jqj ¼ 2�=�typ ¼ 0:126 nm�1 with �typ ¼ 50 nm.
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hump. This results in an additional ringlike structure sur-
rounding a smaller disk in the FT-LDOS image (upper
inset). The number of dips or humps in the FT curve, i.e.,
the number of additional rings in the 2D image, increases
to 2 at LL2 [Fig. 2(c)] and to 3 at LL3 [Fig. 2(d)]. This
general trend is almost quantitatively reproduced by nu-
merical Hartree simulations [8,25] [thin black lines in
Figs. 2(a)–2(d) and lower insets]. Note that especially the
position of the minima in the simulated FT curve shows
good agreement with the position of the dip in the experi-
mental one. The simulations diagonalize the wave func-
tions at B ¼ 6 T within a random disorder potential
calculated using ND and NA of the InSb sample [8,25]. In
order to transform the resulting 3D disorder potential into
2D, a folding with the confined wave function parallel to B
deduced from the triangular well approximation [26] is
used. The resulting 2D disorder is lower than in the ex-
periment, since it ignores disorder from the Cs atoms [8].
This lower disorder explains the stronger features in the
simulated FT, however, without any effect on the position
of the minima. Moreover, the position of the minima is
robust within each disorder-broadened LL as shown in
Fig. 2(e). The same dip position is observed for all volt-
ages, i.e., for localized as well as for extended states. This
is remarkable, since the corresponding real-space LDOS
[Figs. 1(c)–1(e)] shows very different patterns due to the
complicated guiding-center motion. The FT results con-
firm experimentally that ~� from Eq. (3) is dominated by
the energy-independent structure factor ~FnðqÞ at the
large momentum scale jqj ’ l�1

B . More precisely, the min-

ima appearing at larger q are direct fingerprints of the
distinct nodal structure within each LL. Figure 2(f) shows
a direct comparison of the minima positions deduced from
Figs. 2(a)–2(d) with j ~FnðqÞj. The mimima from the FT of
experiment (circles) and simulation (triangles) quantita-
tively match the minima in j ~FnðqÞj.

We now come back to the real space data, where the
nodal structure can be observed by appropriate filtering.
We use the fact that the disorder-induced drift is encoded
up to jqj ’ 0:13 nm�1 [black arrow in Fig. 2(f)] with our
potential disorder [27]. The key characteristic feature of
the real-space nodal structures is encoded at larger jqj.
Thus, by performing bandpass filtering of the FT-LDOS at
large q and a subsequent inverse Fourier transform, we can
identify in real space the transverse nodes decoupled from
the potential disorder (see Fig. 3). Since the scales of
disorder and guiding center motion are not strongly differ-
ent, adequate borders of the filtering are essential to im-
prove the visibility of the nodal structure as outlined in the
Supplemental Material [20]. In the numerical simulations,
we find faint LDOS corrugations around the guiding center
trajectories encircling the potential minima, marked by
crosses in Figs. 3(a) and 3(b), while sharp oscillations
perpendicular to the drift trajectory, marked by dotted
lines, appear for LL1 (two maxima) and for LL2 (three

maxima) after Fourier filtering [28] [Figs. 3(c) and 3(d)].
The double and triple lines are distinct in flat areas of the
potential (as marked), while in other areas where neighbor-
ing potential maxima are close, interference between their
corresponding drift states prohibits a clear distinction.
Within the experimental data, the nodal line structure is
more difficult to find due to the large number of over-
lapping potential extrema. Careful comparison of the
data obtained within different LLs, in combination with
Fourier filtering, nevertheless reveals some regions where
the transition from single via double to triple lines is
observable. For example, consider the marked lines (in
dashed rectangles) in the filtered LDOS of LL1, LL2
[Figs. 3(e) and 3(f)], and LL0 [20] [see line sections in
Fig. 3(g)].
In summary, FT of spatial STS data leads to a decou-

pling of the LDOS structures attributed to the quantum
cyclotron orbit and to the complex disorder-dependent
guiding-center motion. The former exhibits n minima at
universal jqj for the nth LL. These minima are associated
to the n oscillations of the Landau structure factor. By
adequately Fourier filtering the real-space LDOS, the
nodal structure is identified in real space. Our findings
demonstrate that Landau quantization implies disorder
independent universal features on the microscopic scale.
This complements the well-known universal quantum
Hall plateaus.
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FIG. 3 (color online). Real-space nodal structure of LLs along
the guiding center trajectories. (a), (b) Raw real-space LDOS
from numerical simulations within tail of LL1 (a) and LL2 (b)
[E ¼ @!cðn� 0:4þ 1=2Þ, n ¼ 1, 2]. (c), (d) The same real-
space LDOS as in (a), (b) after Fourier high-pass filtering [28]
within jqj � 0:14 nm�1. Crosses in (a)–(d) mark representative
potential minima. (e), (f) Fourier band-pass filtered real-space
LDOS from Figs. 1(e) and 1(f) with additional low-pass filtering
jqj � 0:52 nm�1 to reduce experimental noise; dashed rectan-
gles mark the same area as in Fig. 1(b); black dotted lines mark
double (LL1) and triple (LL2) lines. (g) Line sections along the
same line marked in (e) (LL1), (f) (LL2) and filtered LDOS
(LL0) [20] from Fig. 1(b) (shifted vertically for clarity).
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