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One-dimensional quasiperiodic systems, such as the Harper model and the Fibonacci quasicrystal, have

long been the focus of extensive theoretical and experimental research. Recently, the Harper model was

found to be topologically nontrivial. Here, we derive a general model that embodies a continuous

deformation between these seemingly unrelated models. We show that this deformation does not close

any bulk gaps, and thus prove that these models are in fact topologically equivalent. Remarkably, they are

equivalent regardless of whether the quasiperiodicity appears as an on-site or hopping modulation. This

proves that these different models share the same boundary phenomena and explains past measurements.

We generalize this equivalence to any Fibonacci-like quasicrystal, i.e., a cut and project in any irrational

angle.
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Recent experimental developments in photonic crystals
[1,2] and ultracold atoms [3–5] have made the study of the
dynamics of particles in one-dimensional (1D) quasiperi-
odic systems experimentally accessible. These fascinating
systems have long been the focus of extensive research.
They have been studied mainly in the context of their
transport and localization properties, showing a variety of
interesting transitions between metallic, localized, and
critical phases [6–9]. With their recently found nontrivial
connection to topological phases of matter [10], there is a
growing interest in their boundary phenomena [11,12].

The behavior of particles in such systems is described by
1D tight-binding models with quasiperiodic modulations.
There is an abundance of quasiperiodic modulations,
among which the canonical types are the Harper model
(also known as the Aubry-André model) [6,13] and the
Fibonacci quasicrystal (QC) [14]. The quasiperiodicity of
the Harper model enters in the form of a cosine modulation
incommensurate with lattice spacing, whereas the
Fibonacci QC has two discrete values that appear
interchangeably according to the Fibonacci sequence.
Moreover, the quasiperiodicity may appear in on-site terms
(diagonal), in hopping terms (off-diagonal), or in both
(generalized). Each of these models describes different
physical phenomena. Indeed, the Harper and the
Fibonacci modulations have different localization phase
diagrams, depending also on their appearance as diagonal
or off-diagonal terms (see, e.g., Refs. [7–9]). Notably,
several attempts were made to gather these models under
some general framework [9,15,16], but with only partial
success.

These 1D quasiperiodic models play a nontrivial role in
the rapidly growing field of topological phases of matter
[10–12]. This new paradigm classifies gapped systems
such as band insulators and superconductors [17]. Each
gap in these systems is attributed an index that character-
izes topological properties of the wave functions in the

bands below this gap. By definition, two gapped systems
belong to the same topological phase if they can be de-
formed continuously from one into the other without clos-
ing the energy gap. Conversely, while deforming a system
with a given topological index to a system with another
index, the bands invert and the bulk gap closes; i.e., a
quantum phase transition occurs.
The spectra of the aforementioned 1D quasiperiodic

models are gapped and, hence, appropriate for topological
classification. Apparently, in the absence of any symmetry,
all 1D systems are topologically trivial [18]; namely, all
their topological indices are zero, and therefore the hop-
ping terms in such systems can be continuously turned off
(the atomic limit). Conversely, under the same conditions,
2D systems have nontrivial topological phases, which are
characterized by an integer index—the Chern number. If a
Hamiltonian of a 1D system depends on a periodic pa-
rameter, then this parameter can be considered as an addi-
tional dimension. Taking into account all the possible
values of this parameter, the system becomes effectively
2D, and may have a nontrivial Chern number [19]. This is
seen during the evaluation of the Chern number, which
requires integration of the Berry curvature over this pa-
rameter. It was shown in Ref. [10] that, for QCs, a trans-
lation of the quasiperiodic modulation may be considered
as such a parameter. Remarkably, for QCs the Berry cur-
vature is invariant to this translation, making the integra-
tion over it redundant. Therefore, it was concluded that 1D
quasiperiodic systems can be associated with Chern num-
bers, making the 1D QCs topologically classified.
Here, we use this approach to prove that all the afore-

mentioned 1D models are topologically equivalent when-
ever they have the same modulation frequency. Hence,
there is no quantum phase transition when deforming
between these different models. To prove this equivalence,
we extend each one of the 1D models to an ‘‘ancestor’’ 2D
model. We find that all the resulting models are variants of
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the 2D integer quantum Hall effect on a lattice. These 2D
models are topologically equivalent and nontrivial.
Therefore, their corresponding 1D descendants are also
topologically equivalent and nontrivial. Remarkably, the
equivalence holds between any Fibonacci-like quasicrystal
and a Harper model with a corresponding modulation
frequency.

One-dimensional tight-binding Hamiltonians with
nearest-neighbor hopping and an on-site potential can be
written in the general form

H ¼ X
n

½ðtþ �odVod
n Þcyncnþ1 þ H:c:þ �dVd

nc
y
ncn�; (1)

where cn is the single-particle annihilation operator at site
n, t is some real hopping amplitude, Vod is some hopping
modulation (off-diagonal term), and Vd is an on-site po-
tential (diagonal term). The real and positive parameters
�od and �d control the strength of the off-diagonal and
diagonal modulations, respectively. The quasiperiodicity
of the different models is encoded in the potential modu-
lations Vod and Vd. Using this general form, we first show
the topological equivalence between all the Harper models,
since their relation to the quantum Hall effect is evident.
Then, we turn to encompass also the Fibonacci QCs.

Let us begin with the Harper models, which are gov-
erned by the modulation VH

n ðkÞ ¼ cosð2�bnþ kÞ. This
modulation is parametrized by the frequency b and phase
k. Whenever b is irrational, the modulation is incommen-
surate with the lattice and describes a QC. In this case, k
resembles a translation of the quasiperiodic modulation.
Since k does not affect bulk properties, it was usually
ignored in previous analyses. However, as we shall soon
observe, it plays a crucial role in unraveling the topological
behavior of quasiperiodic models [10].

The diagonal Harper model [13] is defined by setting
�od ¼ 0, �d � 0, and Vd

n ¼ VH
n ðkÞ in Eq. (1). The corre-

sponding Hamiltonian describes uniform hopping and a
modulated on-site potential. For any given k, this
Hamiltonian can be viewed as the kth Fourier component
of some ancestor 2D Hamiltonian. From this viewpoint, k
is a second degree of freedom; hence, we define the opera-

tor cn;k that obeys the commutation relation fcn;k; cyn0;k0 g ¼
�n;n0�k;k0 . We can now define a 2D Hamiltonian H ¼R
2�
0 ðdk=2�ÞHðkÞ, where in HðkÞ we replace the operators

cn with cn;k. Note that, in the following,H (H ) denotes 1D

(2D) Hamiltonians. Defining the Fourier transform cn;k ¼P
me

�ikmcn;m, we obtain the 2D ancestor Hamiltonian of

the diagonal Harper model

H H
d ¼ X

n;m

�
tcyn;mcnþ1;m þ �d

2
ei2�bncyn;mcn;mþ1 þ H:c:

�
:

(2)

This Hamiltonian describes electrons hopping on a 2D
rectangular lattice in the presence of a uniform perpen-

dicular magnetic field with b flux quantum per unit cell
[13,20,21], as illustrated in Fig. 1(a). Note that, inH H

d , the
magnetic field appears in Landau gauge.
In the absence of a magnetic field, the Hamiltonian

commutes with the group of translations. Since the mag-
netic field breaks this symmetry, the notion of the magnetic
translation group was introduced [22]. The magnetic trans-
lation group is generated by the operators Tm̂ and Tn̂, where
Tm̂cn;mT

�1
m̂ ¼ cn;mþ1 and Tn̂cn;mT

�1
n̂ ¼ e�i2�bmcnþ1;m.

These operators commute with the Hamiltonian but not
with each other. However, for a rational flux b ¼ p=q, the
operator Tqn̂ ¼ ðTn̂Þq commutes with Tm̂. Therefore, it is

possible to diagonalize simultaneously H H
d , Tqn̂, and Tm̂.

The spectrum in this case is composed of q bands [21]. In a
seminal paper by Thouless et al. [23], it was shown that
each gap in the spectrum of this model is associated with a
quantized and nontrivial Chern number (Hall conduc-
tance). Later on, it was shown by Dana et al. [24] that
the nontriviality of the Chern numbers stems from the
symmetry of this model with respect to the magnetic trans-
lation group. Choosing consistent boundary conditions
[24], the Chern number �r that is associated with a gap
number r ¼ 1; . . . ; ðq� 1Þ abides the Diophantine equa-
tion r ¼ �rqþ trp, where �r and tr are integers, and 0<
j�rj< q=2 [23].
An irrational b can be approached by taking an appro-

priate rational limit with p; q ! 1. In this limit, the spec-
trum becomes fractal [21]. Nevertheless, even for an
arbitrarily large q, the system abides the aforementioned
Diophantine equation, and the gaps remain associated with
nontrivial Chern numbers. Formally, the evaluation of the
Chern numbers requires integration of the Berry curvature

FIG. 1 (color online). Graphical presentations of 2D
Hamiltonians. The electrons hop on a rectangular lattice in the
presence of a perpendicular magnetic field with b flux quantum
per unit cell. A hopping amplitude from one vertex to another is
denoted by an arrow. (a) The Hamiltonian H H

d , the ‘‘ancestor’’

of the diagonal Harper model. The hopping is to nearest neigh-
bors, and each rectangular plaquette (marked in cyan) is pierced
by b flux quantum. (b) The 2D ancestor Hamiltonian of the off-
diagonal Harper model, H H

od. The hopping is to nearest neigh-

bors in the n direction, and also to next-nearest neighbors. Here,
there are two types of plaquettes, a triangle (dark green) and a
parallelogram (cyan), both pierced by b flux quantum. The
magnetic translation group is the same in both Hamiltonians,
implying that they are topologically equivalent.
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over k [23]. Hence, the quantized Chern numbers charac-
terize only the 2D ancestor model, rather than its 1D
descendant model. However, as shown in Ref. [10], for a
QC, i.e., for an irrational b, the Berry curvature is inde-
pendent of k and there is no need for such an integration.
Therefore, the 1D models can be associated with the same
quantized topological indices.

This simple model demonstrates that the method to
extract the topological indices of a 1D QC is to extend it
to 2D using the above procedure and find the magnetic
translation group of the ancestor Hamiltonian. This yields a
Diophantine equation and, thus, the Chern number of
each gap.

Having performed this method for the diagonal Harper
model, we turn, now, to the off-diagonal Harper model. In
this model, the hopping is modulated and the on-site
potential vanishes. It is defined by setting �od�0, �d¼0,
and Vod

n ¼ VH
n ðkÞ in Eq. (1). Constructing its 2D ancestor

model, we obtain

H H
od ¼

X
n;m

�
tcyn;mcnþ1;m þ �od

2
ðei2�bncyn;mcnþ1;mþ1

þ e�i2�bncyn;mcnþ1;m�1Þ þ H:c:

�
: (3)

This Hamiltonian describes electrons hopping on a rectan-
gular lattice, with nearest neighbors hopping only in the n
direction, and also next-nearest-neighbor hopping. Here,
too, a perpendicular magnetic field is present with b flux
quanta per unit cell and per plaquette, as illustrated in
Fig. 1(b). The corresponding magnetic translation group
is the same as in the diagonal case. Hence, this model
abides the same Diophantine equation, which characterizes
its gaps. Therefore, for a given b, the 2D ancestor
Hamiltonians of the diagonal and off-diagonal Harper
models have in fact the same number of gaps and the
same distribution of Chern numbers, making them topo-
logically equivalent.

The diagonal and off-diagonal Harper models are incor-
porated in the generalized Harper model [8], where in
Eq. (1) we take �od � 0, �d � 0, Vd

n ¼ VH
n ðkÞ, and Vod

n ¼
VH
n ðkþ �bÞ. Now, both the hopping terms and the on-site

potential are cosine modulated. Its corresponding 2D
model has both nearest-neighbor and next-nearest-
neighbor hopping. The magnetic flux per unit cell is still
b, and the magnetic translation group remains the same as
well. Hence, the Diophantine equation is also the same,
independent of relative modulation strengths �d and �od.
We can therefore conclude that, for a given b, as the ratio
�od=�d is changed, all the energy gaps remain open and
thus keep their Chern numbers fixed [25]. This means
that the generalized Harper model provides a way to con-
tinuously deform the diagonal Harper model into the off-
diagonal one, and vice versa, without experiencing a
quantum phase transition.

After showing the topological equivalence between the
Harper models, we now address the Fibonacci QC. This
QC is governed by the modulation VF

n ¼ 2ðbðnþ 2Þ=�c �
bðnþ 1Þ=�cÞ � 1 ¼ �1, where � ¼ ð1þ ffiffiffi

5
p Þ=2 is the

golden ratio and bxc is the floor function. Similar to the
Harper modulation, the VF modulation can be employed as
a diagonal Fibonacci QC, with �od ¼ 0 and Vd

n ¼ VF
n .

Alternatively, it can be employed as an off-diagonal
Fibonacci QC, with �d ¼ 0 and Vod

n ¼ VF
n . Due to the

discontinuous nature of these QCs, they have no apparent
ancestor 2D models. This seemingly prevents the extrac-
tion of their topological indices.
We can overcome this barrier by constructing a modu-

lation that continuously deforms the Fibonacci into a
Harper modulation. Consider the function fðxÞ ¼
2ðbxþ ac � bxcÞ � 1, where 0< a< 1. The function
hðxÞ ¼ cosð2�xþ a�Þ � cosða�Þ has the same sign as
fðxÞ for any x. Therefore, gðx;�Þ ¼ tanh½�hðxÞ�=
tanh½�� is a continuation between the smooth hðxÞ ¼
gðx;� ! 0Þ and the steplike fðxÞ ¼ gðx;� ! 1Þ.
Accordingly, we define the smooth modulation

VS
n ðk;�Þ ¼ tanhf�½cosð2�bnþ kÞ � cos�b�g

tanh�
: (4)

It can be seen that, in the limit of small �, this smooth
modulation becomes the Harper modulation, up to a con-
stant shift, VS

n ðk;� ! 0Þ ¼ VH
n ðkÞ � cos�b. In the oppo-

site limit, it approaches the Fibonacci modulation,
VS
n ðk ¼ 3�b;� ! 1Þ ¼ VF

n for b ¼ 1=�, as depicted in
Fig. 2(a). Similar to the generalized Harper model, we now
define a generalized smooth model

HSðk;�Þ ¼ X
n

f½tþ �odVS
n ðkþ 4�b;�Þ�cyncnþ1 þ H:c:

þ �dVS
n ðkþ 3�b;�Þcyncng; (5)

where b ¼ 1=�. This model is a continuous deformation
between the generalized Harper model and a generalized
Fibonacci QC, with � being the deformation parameter.
Now, we are able to construct a corresponding 2D model

that includes also the Fibonacci QC. Recall that, in the
diagonal Harper model, the modulation of cosð2�bnþ kÞ
resulted in hopping one site in the m direction, accompa-
nied with a phase factor of e�i2�bn [see Eq. (2)]. One
can think, however, of a more general modulation
F½cosð2�bnþ kÞ�, where F is some analytic function. In
such cases, F can be expanded as a Taylor series in powers
of cosð2�bnþ kÞ. In turn, the series can be rewritten as a

series in powers of e�ið2�bnþkÞ. The lth component of this
series will appear in the 2D ancestor model as a term of
hopping l sites in the m direction. The amplitude of this
hopping term would be Fle

i2�bnl, where Fl is the
Fourier transform of F½cosðkÞ�. Similarly, an off-diagonal
modulation will result in terms that incorporate hopping to
the nearest neighbor in the n direction with longer-range
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hopping in the m direction. Therefore, the 2D ancestor
Hamiltonian of HSðk;�Þ is

H Sð�Þ ¼ X
n;m

�
tcyn;mcnþ1;m þX1

l¼0

vS
l ð�Þ

� ð�odei�bð2nþ4Þlcyn;mcnþ1;mþl

þ �ode�i�bð2nþ4Þlcyn;mcnþ1;m�l

þ �dei�bð2nþ3Þlcyn;mcn;mþlÞ þ H:c:

�
; (6)

where vS
l ð�Þ ¼

R
2�
0 ðdk=2�ÞeilkVS

n¼0ðk;�Þ. It can be

shown that [26]

vS
l ð�Þ ¼

8><
>:
l 2 2Z ð�1Þl=2�1 4

� tanh�

P1
j¼0 Im

�
zj

lþ1

1þzj
2

�

l 2 2Zþ 1 ð�1Þl�1=2 4
� tanh�

P1
j¼0 Re

�
zj

lþ1

1þzj
2

�
;

(7)

where zjð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðwj � i�Þ2

q
� ðwj � i�Þ with wj ¼

ðjþ 1=2Þ�=� and � ¼ cosð�bÞ. The physical meaning
of vS

l is better understood by looking at the limits of large

� and small �. In the Harper limit of � � 1 [26],

vS
l ð� � 1Þ �

8><
>:
l 2 2Z �� 8

�2 ðjlj þ 1Þul
�
i�
�

�jlj

l 2 2Zþ 1 4
�2 ul

�
i�
�

�jlj�1
;

(8)

where ul ¼ 1þ ð�l;0 þ �l;�1Þð�2=8� 1Þ. We can see that,

in this limit, the hopping in the m direction decays expo-
nentially with the distance l. In the extreme limit of � ¼ 0,
only the terms with l ¼ 0;�1 survive and H S becomes
the 2D ancestor of the generalized Harper model (up to a
constant shift of the energy). In the opposite limit of
� � 1, i.e., the Fibonacci limit [26],

vS
l ð� � 1Þ � ð�1Þbbc

�
2

�l
sinðl�bÞ þ �l;0ð1þ 2bbcÞ

�
:

(9)

Now, the hopping in the m direction is no longer local, but
decays as 1=l.

Regardless of the exact value of �, H S describes elec-
trons hopping on a rectangular lattice. Moreover, since the
amplitudes of the hopping in the m directions are accom-
panied by the phases e�i2�bnl, in this model also a mag-
netic field is present with b flux quanta per unit cell.
Remarkably, despite the varying hopping behavior, the
magnetic translation group remains the same for all values
of �. Therefore, the Diophantine equation is also the same
for all �. Consequently, while varying � from zero to
infinity, the gap structure and its corresponding nontrivial
Chern numbers are unchanged. Since � turns the Harper
model into the Fibonacci QC, it implies that they are

topologically equivalent. Note that this is true also for
any value of �od=�d.
The real and positive parameters � and �od=�d span the

space of models that contain the diagonal and off-diagonal
Harper and Fibonacci models, as illustrated in Fig. 2(b).
We can therefore conclude that all the 1D models HS in
this space are topologically equivalent and nontrivial.
Moreover, the same holds true for any irrational b. Here,
taking� to infinity results in a Fibonacci-like QC with � ¼
1=b as the modulation frequency of VF. Note that any
Fibonacci-like QC can be obtained via the cut-and-project
method [27] by taking � ¼ 1þ 1= cot�, with � the angle of
the projection line. This means that any Fibonacci-like QC
with a given � is topologically equivalent to a Harper
model with b ¼ 1=�, and both are topologically nontrivial.
For a rational b, i.e., for periodic systems, the 2D ancestor
Hamiltonians are equivalent, but the implications to the 1D
models are more subtle [10]. Nevertheless, no bulk gaps
will close when deforming between them.
The physical manifestation of the topological nontrivial-

ity of a QC is easily seen in the emergence of boundary
states that traverse the energy gaps as a function of the
translation parameter k. The Chern number of each gap is
equal to the number of boundary states that traverse the
gap. The topological equivalence of the aforementioned
1D models implies that the number of traversing boundary
states in a given gap is constant when � and �od=�d are
changed. This should be contrasted to the localization
properties of the bulk states, which vary considerably
during such a change [8].
The topological nontriviality of the diagonal and off-

diagonal Harper models has been recently demonstrated
experimentally via boundary phenomena [10]. It would be
intriguing to test this for the Fibonacci QC as well, where

FIG. 2 (color online). (a) The smooth continuation between the
Harper and the Fibonacci modulations VS

n [cf. Eq. (4)] for b ¼
2=ð1þ ffiffiffi

5
p Þ, k ¼ 0, and several values of the smoothing parame-

ter �. For � ! 0, VS resembles the Harper modulation VH,
whereas for � ! 1 it approaches the Fibonacci modulation VF.
Varying � has no influence on the distribution of the Chern
numbers, meaning that the Harper model and the Fibonacci QC
are topologically equivalent. (b) Illustration of the space of
quasiperiodic systems spanned by the smoothing parameter �
and the diagonal–off-diagonal ratio �od=�d, when substituted in
the general Hamiltonian HS [cf. Eq. (5)]. All the systems in this
space are topologically equivalent, with the same number of gaps
and the same Chern numbers.
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we expect gap-traversing boundary modes to appear. Our
prediction is supported by the fact that the existence of
subgap boundary states in the Fibonacci QC was noticed
[28], measured [29], and analyzed to be quantitatively
similar to those of the Harper model [30].

To summarize, we developed a 1D model that ranges
smoothly from the Harper model to a Fibonacci or
Fibonacci-like QC and from diagonal to off-diagonal mod-
ulations, as a function of control parameters. Using the fact
that dimensional extension of QCs from one to two dimen-
sions reveals their topological character, we extended this
model to 2D. We found that in 2D the hopping behavior
changes significantly with the control parameters.
Nevertheless, the magnetic translation group is unaffected.
This implies that the same nontrivial Chern numbers re-
main for all values of the control parameters. Therefore, we
conclude that all these 1Dmodels are topologically equiva-
lent and nontrivial. It would be interesting to follow the
same process for other QCs, which may exhibit novel types
of topological phases. For example, 2D and 3D QCs, which
are obtained via cut-and-project methods [27,31], may
have topological characteristics of 4D and 6D systems,
respectively.
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