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Reentrant Wetting of Network Fluids
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We use a simple mesoscopic Landau-Safran theory of network fluids to show that a reentrant phase
diagram, in the “‘empty liquid” regime, leads to nonmonotonic surface tension and reentrant wetting, as
previously reported for binary mixtures. One of the wetting transitions is of the usual kind, but the low
temperature transition may allow the display of the full range of fluctuation regimes predicted by

renormalization group theory.
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A prominent feature of structured fluids [1] is the pres-
ence of self-assembled structures and complex behavior,
with large macroscopic responses to weak external fields or
changes in the particle interactions. The fluid structure,
ranging from the molecular (angstroms) to the mesoscopic
(microns) scale, can be tuned through the effects, for
example, of external surfaces or through the intermolecular
interactions [2,3]. Simple examples include the formation
of spherical micelles, hexagonally packed cylinders, and
lamellae in systems of liquid crystals, surfactants, and
block copolymers [4].

An important subset of structured fluids are network
fluids, where the self-assembly is anisotropic, leading to
the formation of branched chain structures that can be
tuned by changing the temperature and/or the ratio of
the bonding interactions. Equilibrium polymers are the
paradigmatic example of such a fluid [1]. One of the
interesting features of network fluids is that under very
general conditions, the liquid-vapor binodal is reentrant
with the liquid (a network fluid with a large number
of branches) and the vapor (a fluid of linear chains with
little or no branching) densities vanishing at low tempera-
tures [5,6].

In this Letter we consider the adsorption and wetting
properties of network fluids. We show that the reentrant
phase diagram leads to peculiar interfacial phenomena,
such as nonmonotonic interfacial tension and reentrant
wetting transitions, where a surface is wet by the liquid
phase at high temperature (as in normal molecular liquids)
and also at low temperatures. A particularly intriguing con-
sequence of our results is the possibility of network fluids
to display the full range of fluctuation-dominated behavior
at the low-temperature wetting transition, long predicted
by theory, but unobserved so far.

Our starting point is a simple Landau-like phenomeno-
logical theory proposed a decade ago by Tlusty and Safran
[6], with the Landau-Safran free-energy density
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where ¢ is the volume fraction and &, and &, are two
energy scales related to the free-energy of chaining and
branching, which are described by the first and second
term, respectively. The last term accounts for repulsion
between the constituents of the fluid. This free-energy
density describes qualitatively the universal features (in-
cluding the phase diagram reentrance, see Fig. 1) of a
broad range of network fluids, from microemulsions to
dipolar fluids and patchy colloids. The common feature
of this class of fluids is that, in a region of the phase dia-
gram, the thermodynamic behavior is dominated by equi-
librium chaining and branching of the components. To see
how these lead to the free-energy density [Eq. (1)] we fol-
low the scaling argument of Tlusty and Safran [6]. Let
W(r) be the probability that a chain starts or ends at the
point r. The probability that a chain goes through a point r
is ~W(r)?, as we might think of a point in a chain as the
end and the beginning of two chains. Within mean field it
follows that ¢ ~ W2, The concentration of ends is thus
p1 ~ Wes1/T ~ p1/2¢=1/T and the concentration of chain
branching points is p, ~ W3¢ #2/T ~ $3/2¢=22/T [6]. The
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FIG. 1 (color online). Phase diagram of the Landau-Safran
theory, with a reentrant phase diagram and a low density liquid
at low temperatures. £; = 0.67 and &, = 0.12 [6]. The critical
point is at (7. = 0.162, ¢, = 0.0507) and the maximum liquid
density is at (T = 0.135, ¢ = 0.0921).
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temperature is measured in units of 2k /&, where kj is the
Boltzmann constant.

The Landau-Safran free-energy density is the network
fluid equivalent of the standard “¢*” Landau theory of
critical fluids [7]. As in other Landau-type theories, this
phenomenological approach gains in generality what it
loses in specific details: the price to pay for such a general
description is that the coefficients in Eq. (1) are best seen as
parameters to be determined by a more detailed, specific,
theory. In this Letter we use the values of £, = 0.67 and
g, = 0.12 calculated for dipolar fluids [6]. In fact, the
specific values are not important, as long as they corre-
spond to a reentrant bulk phase diagram. Other values ap-
propriate to other types of fluids can be calculated from
microscopic theories. For example, it was shown recently
that the Landau-Safran theory is obtained in the strong
bonding regime of a general microscopic theory for net-
work fluids with two types of bonding sites [8]. Another
weakness of this type of coarse-grained descriptions is the
inability to capture the finer details of the local structure
and correlations of the liquid. However, none of this affects
qualitatively our results, as the global wetting properties
are known to be robust with respect to such details [9].

The knowledge of the bulk free energy density [Eq. (1)]
is not sufficient to calculate the interfacial properties.
The essential ingredient missing is a term that accounts
for the free-energy cost of spatial changes in the density. In
the spirit of van der Waals and Landau we simply augment
the free-energy density by a square gradient term y(V¢)?.
This can be considered the first term in an expansion on the
gradient of the volume fraction. The constant 7y can be
calculated from more microscopic theories (such as density
functional theory [10,11]) but it is best seen as a phenome-
nological parameter to be determined later, as in other
Landau theories.

The next step to calculate the interfacial properties is to
obtain the excess pressure (or excess free energy)
Q(p, T) = f(d, T) — ud + P, where the chemical poten-
tial u and the pressure P are evaluated at coexistence. We
denote this quantity by (¢, T) as this is also the grand
potential at coexistence for a given volume fraction. ()
plays the role of the usual “¢*” potential in the Landau
theory of critical phenomena [7].

Following Rowlinson and Widom [12], the liquid-vapor
surface tension is given by

o(T) = [j’ A2y, T), @)

where ¢, is the volume fraction of the gas and ¢, is the
volume fraction of the liquid. We plot the surface tension
for y = 1 in Fig. 2. Clearly, the reentrance in the phase
diagram leads to a nonmonotonic surface tension, with the
surface tension vanishing both at the critical point and
at zero temperature. Normally the surface tension is a
decreasing function of the temperature. Note that the
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FIG. 2 (color online). Liquid-vapor surface tension o as a
function of the temperature 7 for &; = 0.67, &, = 0.12, and
v = 1. The reentrance of the phase diagram is responsible for a
nonmonotonic surface tension, which vanishes at the critical
point 7, = 0.162, as usual, and in the limit 7 — 0, a feature
of the network fluid. The maximum value of the surface tension
O max Occurs at Th.. = 0.112 which differs from the temperature
Tmax = 0.135 where the liquid reaches the maximum density.

choice of v = 1 is rather arbitrary. This constant can either
be calculated from a microscopic theory or determined
from the measured value of the surface tension of the
network fluid, since it merely introduces a factor of ,/y
in the calculated surface tension.

To study the wetting behavior of a network fluid we put
this fluid in contact with a surface. There are several ways
of modeling a surface but the simplest is to impose a fixed
volume fraction ¢, at the surface, which we place at z = 0.
Under these conditions the contact angle is

20’51(T, ¢s)
0=1——7—, 3
cos o () 3)
where the surface-liquid tension is given by
¢
.60 = [TasPyoen. @

It follows, from inspection, that if ¢, = ¢; then 6 = 0;
i.e., there is a wetting transition at the temperature T,
where the liquid volume fraction equals the volume frac-
tion at the surface ¢, = ¢;. This condition can be fulfilled
either by changing the volume fraction at the surface or by
changing the temperature, and thus the volume fraction of
the liquid. For a surface that imposes a fixed volume
fraction the wetting transition is always continuous (criti-
cal); a first-order wetting transition can be obtained with a
more general type of surface [13-16].

If we fix ¢, then the contact angle as a function of
the temperature displays two types of generic behavior.
At T = 0 the surface is always wet due to the extremely
low volume fractions of the coexisting liquid. At higher
temperatures the behavior depends on the volume fraction
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FIG. 3 (color online). Contact angle 6 with temperature T for
g; =0.67, &, =0.12, y = 1. There are two types of generic
behavior, depending on the ratio ¢./ ;. (a) . < ¢, = 0.6. The
contact angle goes to zero at the upper 7,,+ = 0.1616 and lower
T,- = 0.0938 wetting transitions (vanishing when the surface
is wet) and has a finite value for intermediate values of the
temperature. (b) ¢, > ¢, = 0.4. The contact angle spans the
entire range of values, going to zero at the wetting transition for
low temperatures 7,,- = 0.0792 and to 180° at the drying
transition (or wetting by the gas) T,,+ = 0.1614 close to the
critical point.

at the critical point ¢ . If ¢, > ¢, then the surface is again
wet as we approach the critical temperature (T — T,). This
wet-nonwet—wet sequence is known as reentrant wetting
[17,18]. If, on the other hand, ¢, < ¢, the surface is
completely dry (wet by the gas phase) as T — T,. In
Fig. 3 we plot the contact angle for these two cases, which
have analogues in binary mixtures [17,18].

Within our mean field framework we can also calculate
the density profiles (or rather, the volume fraction profiles)
by minimization of the grand potential. The profile is the
solution of the differential equation

I

9z
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with boundary condition ¢(0) = ¢, at the surface. We
obtain the profiles from the numerical solution of this
equation and from these we can calculate the excess
adsorption

&)
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In Fig. 4 we plot the excess adsorption, and some
representative profiles. We observe the expected (continu-
ous) divergence of the adsorption at the two critical wetting
transitions, separated by a region of finite adsorption,
where the surface is not wet and the contact angle has a
finite value [13-16]. One may ask what happens when the
volume fraction at the surface increases, and approaches
the maximum volume fraction of the liquid ¢,,,,, on the
edge of the reentrant region. It is easy to see that the two
wetting transitions approach each other and “‘coalesce”
when ¢, = ¢, and it is natural to inquire whether the
description of the wetting transition changes at this point.
Within mean field this ““coalescence” does not seem to
have any special features, as the excess adsorption always
has a logarithmic divergence, independent of the thermo-
dynamic path from the nonwet to the wet region. Recalling
that the relevant scaling field for the wetting transition is
the difference between the volume fractions of the liquid
and the volume fraction at the wall ¢; — ¢,,, changing the
value of this quantity by controlling the temperature or the
wall volume fraction is a matter of convenience, which
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FIG. 4 (color online).

Excess adsorption I with temperature 7' for &, = 0.67, &, = 0.12, v = 1, and ¢, = 0.7 and representative

volume fraction profiles ¢ (z) for two wet surfaces (a) T = 0.095 and (d) T = 0.16, one nonwet surface (¢c) T = 0.13, and two profiles
close to the wetting transitions (b) 7 = 0.102 and (e) T = 0.158. The wetting transitions are at 7,,- = 0.1018 and T,,+ = 0.1592. The
adsorption is finite as we consider a finite system (z = 30). The dashed black line [30 X (¢; — ¢,)] is an approximation of the
adsorption of a wet surface. Upon changing the volume fraction at the surface ¢, towards the maximum value of the volume fraction of
the liquid (¢, = 0.921, at the onset of the reentrance) the two wetting transitions ““collide.”
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does not affect the interfacial singular behavior, at least at
mean field level.

An intriguing issue raised by the reentrant wetting phe-
nomena we just described is the possibility of observing
the full range of fluctuation-dominated critical wetting
phenomena. The renormalization group theory for critical
wetting transitions predicts that the critical exponents
are not universal, but depend on a ‘“‘wetting parameter”
w = % [13-16], T, is the wetting temperature, and
¢ is the bulk correlation length of the liquid. For example,
for the parallel correlation length of the interfacial fluctua-
tions, & ~ |T — T,,| "1, there are three regimes: v =

T Tw
if 0=w<1/2, ”“:WEJ—W if 1/2<w<2, and
§|| ~ e/ T=D) i ¢ > 2.

Since in normal fluids the wetting transition occurs close
to a critical point the value of w is dominated by the
universal properties of the critical point and does not
deviate much from the “Ising value” w = 0.8. The same
will happen for reentrant wetting close to a lower critical
point. For network fluids the upper wetting transition is
Ising-like [19] but the low temperature wetting transition is
not driven by a critical point, and thus there is no reason to
constrain w to the Ising-value w = 0.8. In fact, by tuning
the surface and bulk properties independently, we can
set the value of the surface tension as low as we like,
scanning the entire range of values of the wetting parame-
ter, opening the exciting prospect of checking the renor-
malization group theory predictions experimentally. As an
example, for microemulsions, the surface tension [20],
measured in units of kzT& 2, ranges from = 100 to
~ 0.3 and thus w varies from 0-0.25. This means that
the wetting transition for microemulsions will display be-
havior close to mean-field (w = 0) but w varies from the
mean-field value | = 1 to ) = 1.33. One final caveat:
as intriguing as the above prospect might seem we must
keep in mind that the critical wetting transition is the
exception rather than the rule. In particular the Ising-like
behavior predicted by theory has never been observed [13],
and the theoretical description of the critical wetting tran-
sition is rather subtle, involving nonlocal effects [21,22].

To conclude, we used a simple Landau-like theory to
study the wetting behavior of network fluids, and found a
range of unusual properties: nonmonotonic surface ten-
sion, two wetting transitions, or a wetting transition fol-
lowed by a drying transition. Particularly intriguing is the
possibility of exploring the range of fluctuation-dominated
critical behavior, predicted by theory but never observed.
All of these are driven by the reentrant bulk phase diagram.
In particular, the “extra” wetting transition at low tem-
peratures is a direct consequence of the very low densities
of the liquid phase as T — 0, the “empty liquid” regime,
driven by the branching of the chains.

A coarse-grained model is very valuable to guide the
exploration of the interfacial phenomena of network fluids.
In particular, patchy colloids have been a hot topic recently

for their potential technological applications and interest-
ing properties [23]. An appropriate microscopic theory will
always be much more complicated than the Landau-Safran
theory used here. Thus our results can provide useful guid-
ance when dealing with surface and interfacial phenomena
of patchy colloids. It is well known that the global inter-
facial properties derived from such simplified theories are
useful and robust [9].

Wetting and interfacial phenomena can be used to con-
trol material properties. As an example, wetting has a pro-
found effect on free-energy barriers between phases and
thus allows control of the kinematics of transitions, such as
condensation, gelation, or solidification. For example, the
reentrant melting of DNA-coated colloids was shown to be
effective in decreasing the kinetic barriers for crystalliza-
tion over a wide range of temperatures [24].
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