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Although nanodispersive precipitation-hardened alloys have been intensively studied over decades as

important structural materials, the possibility that these alloys may have superfunctional properties has

been completely overlooked. As shown in this Letter, they may have giant low-hysteretic strain responses

to external stimuli if the nanosized single-domain precipitates can switch their orientation variants under

applied fields. We demonstrate that the misfit-generated coherency stress can significantly reduce the

variant switching barriers and may drastically decrease or even eliminate the hysteresis of the strain super

responses to external stress and/or magnetic fields. These alloys can thus be functionalized as shape

memory, superelastic, and/or supermagnetostrictive materials. The conditions of such functionalization

are established by the interpretation-transparent analytical calculations, and confirmed by computer

prototyping. In particular, the obtained results pave the way for the engineering of rare-earth free alloys

with excellent magnetomechanical and good mechanical properties.
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Decades of intensive investigations of precipitation-
hardened alloys have been driven by the goal of further
enhancement of their mechanical properties [1,2]. It has
been assumed as self-evident that the atomic structure of
the precipitates does not change after their formation
[3,4]. However, in the important cases wherein the
low-symmetry precipitate phase has multiple crystallo-
graphically equivalent orientation variants, there is no
physical reason to ignore the possibility of the displacive
crystal lattice rearrangement (variant switching) within
nanosized single-domain precipitates under applied
fields. This scenario is especially plausible when the
low-symmetry phase is near the inherent lattice instabil-
ities where the energy barriers of the variant switching
are expected to be small [5–11]. Such switching should
generate giant strain responses that are commensurate
with the relative lattice misfits between the orientation
variants. If the switching is recoverable and low-
hysteretic and the applied field is stress, the result is
superelasticity. It is supermagnetostriction if both precip-
itates and matrix are ferromagnetic and the applied field
is magnetic.

The energy barriers are expected to be small when
the material is soft with respect to a certain shear deforma-
tion. For example, alloys with low elastic anisotropies,
C0 ¼ ðC11 � C12Þ=2 � C44, where C11, C12, and C44 are
elastic constants of the parent cubic phase, are soft with
respect to any strain rotation the principal directions of the
transformation strain, "0ij [12,13]. An example of this type

material seems to be the doped TiNi-based alloys that are
two-phase nanodispersions of low-symmetry clusters with
superelastic behavior [5–7]. There are growing evidences
that the recently discovered nanostructured multicompo-
nent Ti3Nb-based alloy dubbed Gum Metal [7–10] also
belongs to this group of materials.

In this Letter, we focus on the second group of alloys
with very strong elastic anisotropy (C0 � C44) that are soft
with respect to the shear strain of h1�10if110g. This is a
condition of the Zener instability that is, in particular,
observed in the � phase martensitic alloys [6,11]. The
important new result is a discovered effect of the further
reduction or even vanishing of the switching energy barrier
caused by the coherency stress generated by the crystal
lattice misfit, "0ij. This effect is responsible for the achieve-

ment of the recoverable low-hysteretic switching and the
corresponding low-hysteretic strain response of the two-
phase nanostructured alloys.
In fact, the variant switching within precipitates can be

regarded as a confined martensitic transformation whose
crystal lattice rearrangement is described by evolving "0ij
[12,13]. Generally, its theoretical characterization is a
complex multiparticle problem involving elasticity of sig-
nificantly nonlinear (anharmonic) system of arbitrary mor-
phology. However, as shown here, the solution of this
problem has a closed analytical form for the frequently
observed platelike precipitates. The solution for the strain
response is reduced to an easily interpreted algebraic equa-
tion, which is asymptotically accurate for platelike precip-
itates with small thickness-to-length ratio.
For certainty, a typical particular case of precipitation of

the tetragonal phase from the cubic matrix is discussed—
the consideration of precipitation of other low-symmetry
phases can be obtained by a trivial extension. The simplest
polynomial interpolation of the specific free energy is [14]:

finð"0ijÞ ¼
1

A2

Y3

q¼1

�½"0ij; "00ij ðqÞ�; (1)

where �½"0ij;"00ij ðqÞ�¼ 1
2CijklðqÞ½"0ij�"00ij ðqÞ�½"0kl�"00kl ðqÞ�,

CijklðqÞ are the elastic moduli of the qth variant of the
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tetragonal phase (q ¼ 1, 2, 3), "00ij ðqÞ is the conventional

eigenstrain describing the qth variant of the stress-
free tetragonal phase in the cubic coordinates [15], and
A ¼ �½"00ij ð1Þ;"00ij ð2Þ� is a normalization factor. The energy

(1) minimized at "00ij ðqÞ has the cubic symmetry with

respect to "0ij. It reproduces the elastic moduli and approx-

imates the intrinsic energy barriers between the orientation
variants of the tetragonal phase without any arbitrary
chosen fitting parameters.

The formation of coherent precipitates with a misfit
strain, "0ij, generates coherency stress modifying the value

of the energy barriers. Based on the Khachaturyan-
Shatalov theory [3,16], the coherency energy can be calcu-
lated by the complex analytical equation for arbitrarily
shaped elastically anharmonic inclusions. However, in
the typical particular cases of platelike precipitates, the
equation for the coherency energy is reduced to

fcohðn0; "
0
ijÞ ¼

!

2
Bijklðn0Þ"0ij"0kl; (2)

where ! is the volume fraction of the precipitate, n0 is
a unit vector perpendicular to the habit plane of the
plate, and Bijklðn0Þ is an algebraic function of n0. (See

Supplemental Information [17]). Since the strain-induced
interaction between platelike precipitates is a small
correction to the interfacial energy, we neglect the inter-
action and consider each precipitate separately, (See
Supplemental Information [17]). The total specific
Helmholtz and Gibbs free energies of the system are thus
approximated as

fð"0ij;n0Þ ¼ !finð"0ijÞ þ 0:5!Bijklðn0Þ"0ij"0kl; (3a)

gð"0ij;n0; �
app
ij Þ ¼ fð"0ij;n0Þ �!�

app
ij "0ij; (3b)

where �
app
ij is the applied stress. Both "0ij and n0 in (3),

in fact, are the long range order (lro) parameters of the
system evolving during the decomposition at the elevated
temperature. Their energy-minimizing values, "0ij ¼ "prij
and n0 ¼ np, determine the confined atomic structures
and the morphology (the orientation of the habit plane)
of the coherent platelike precipitate, respectively. It is
noted that "prij determining the coherency energy and the

structure (and crystal lattice symmetry) of the precipitates
differs from the stress-free strain, "00ij ðqÞ [12,13]. In addi-

tion, the total strain of a platelike precipitate is always an
invariant plane strain that usually produces monoclinic
rather than tetragonal structure of the elastically con-
strained precipitate [3] (See more in [17]).
Figure 1 compares the energy landscapes of finð"0ijÞ and

fð"0ij;npÞ=!, where np is obtained by the zero-field de-

composition. It is shown that the addition of the coherency
energy changes the locations of energy wells, their depths,
and barriers between them. In particular, the volume
change of the cubic ! tetragonal transition plays a signifi-
cant role on determining the orientation of the precipitates,
supplemental Fig. S1 [17], and thus the topology of free
energy landscapes, Figs. 1(b) and 1(c).
Since the precipitates are formed by the diffusion-

controlled decomposition, their shapes and orientations
are fixed after the diffusion is frozen at a low temperature,
i.e., n0 � np ¼ const. Therefore, the only effect produced
by the applied stress is an evolution of "0ij within the

precipitate, which generates a macroscopic strain. The
paths of evolving "0ij under uniaxial stresses applied along

the h100i directions are schematically shown in Figs. 1(b)
and 1(c). The stress-strain responses along different evolv-
ing paths, "0ij ¼ "0ijðnp; �

app
ij Þ, can be determined by

FIG. 1 (color online). Intrinsic and the Helmholtz free energies in the planes of "�ii ¼ 0 (a)–(b), and "�ii ¼ 1=7 (c), where a large
elastic anisotropy is used (C0 ¼ 0:1C44), and the strain and the energy are reduced by ("c � "a) and�f ¼ C44ð"c � "aÞ2, respectively.
The energy states significantly away from the visualized planes are much higher, and the intrinsic free energy of the case of "�ii ¼ 1=7
is similar to (a) (See Supplemental Fig. S2 [17]). In (b)–(c), three variant switching paths of the calculated precipitate under a uniaxial
stress applied along the h100i; directions are demonstrated. Comparing to (a), the energy barriers along the possible switching paths in
(b)–(c) are dramatically reduced or even diminished (single-well configuration along the paths).
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solving the algebraic equation of @g=@"0ij ¼ 0 [17]. The

plots of the solution are shown in Figs. 2(a) and 3(a).
The coherent decomposition of an unconstrained sam-

ple, �app
ij ¼ 0, can produce 12 types of energetically

equivalent platelike tetragonal precipitates. Their energy-
minimizing transformation strains and habit-plane orienta-
tions are symmetry related. As a result, if a uniaxial stress
is applied along one of the h100i directions, the strain
response of a specific type of precipitates can be obtained
from that of the other type by the use of symmetry relations
between them. Thus the total strain of the sample is a sum
of the strain of all types of precipitates multiplied by their
volume fractions [17]. Figs. 2(a) and 3(a) show that the
stress-induced variant switching can produce giant strains
comparable with "00ij , and the associated hysteresis can be

drastically reduced, Fig. 3(a).
Usually, the early stage of precipitation of the tetragonal

phase produces the so-called tweed structure consisting of
platelike nanoscale coherent inclusions within the cubic
matrix [18]. In particular, this is the case for a precursor
state of the ferromagnetic martensitic alloys [19–21]. The
lro parameters for this magnetic system are the transfor-
mation strain, "0ij, and the magnetization, M. Like the

stress, the magnetic field, H, may also provide a driving
force for the switching between different orientation vari-
ants of the precipitates. Indeed, the ferromagnetic nano-
precipitates and matrix are exchange coupled because the
magnetic exchange correlation length is usually signifi-
cantly larger than the size of nanoprecipitates. Therefore,

an H field applied to the sample will switch/rotate the
magnetization of both matrix and precipitates toward H.
If the coupling between the magnetization direction and
the direction of the orientation variant of the precipitate is
sufficiently large, it consequently switches the orientation
variants of nanoprecipitates and thus produces a large
strain response to the H field. This extrinsic response is
supermagnetostrictive because the induced strain is of the
order of "00ij .

The coupling between "0ij and M is originated from the

energy of magnetocrystalline anisotropy [22–24]:

f"Mðm; "0ijÞ � ��mimj"
0
ij; (4)

where � ¼ K="c, K is the magnetocrystalline anisotropy
constant [22–24], andm ¼ M=M is a unit vector alongM.
It is noted that the energy (4) has the same form of the
conventional magnetoelastic coupling energy [25], and it
can be derived from the conventional form of the magneto-
crystalline anisotropy, f"M ¼ K½1� ðm � eÞ2� [22], by a
shifting of the reference state, where e is a unit vector
along the tetragonality axis.
If we interpret �mag

ij ¼ �mimj as a ‘‘magnetic stress’’,

the energy (4) plays the same role as the stress energy term
in 3(b), ��

app
ij "0ij. Therefore, both the stress-induced and

H-induced strain responses of platelike precipitates are
described by the same Eq. (3b). However, unlike the me-
chanical stress that can easily reach the switching thresh-
old, the magnetic stress�

mag
ij ¼ �mimj, can reach it only if

K is sufficiently large. Another difference is that �mag
ij in

(4) cannot change sign: it is always either negative (com-
pressive) or positive (tensile). The calculated ‘‘magnetic
stress’’-strain curves suggest that such ferromagnetic

FIG. 3 (color online). Calculated longitudinal strain responses
of a cubic ! tetragonal phase precipitation with a volumetric
effect ("�ii ¼ 1=7) to differently oriented uniaxial stresses (a),
and magnetic fields (b). Except for the volumetric effects, all
other parameters used here are the same as in Fig. 2, (see Fig. 2
for the legends). It is noted that the switching induced strain
response of the considered type of precipitates to a stress along
the 100 direction is giant and nonhysteretic, (a), and the
H-induced switching produces large strain response with small
hysteresis, (b).

FIG. 2 (color online). Calculated longitudinal strain responses
of a cubic ! tetragonal phase precipitation without volumetric
effect ("�ii ¼ 0) to differently oriented uniaxial stresses (a), and
magnetic fields (b). The ‘‘Average’’ curves are the averages of
the responses to fields applied along three h100i directions. In
(b), the positive (tensile) magnetic stress, �� ¼�=C44ð"c�"aÞ¼
0:02, is assumed of the same order of the experimentally
observed K [24,25], (� 105 J=m3), and a constant bias compres-
sion, ��

b ¼ �=C44ð"c � "aÞ, is applied along the same direction

of the H-field. The horizontal axis in (b) is the magnetic stress.
The change ofH-field during the cycling is schematically shown
on the top of (b). The stress-strain hysteresis of nondispersions in
(a) is significantly reduced when comparing to that of the
homogeneous tetragonal phase (without precipitation).
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nanodispersions can really have the giant magnetostriction
and small hysteresis [Figs. 2(b) and 3(b)]. It is noted that
the values of K used in the calculation is of the same order
of the experimentally observed ones [23,24].

It turns out that the analytical results obtained for the
platelike precipitates are quite general: we essentially
obtained the same H-induced strain responses of ferromag-
netic nanodispersions in the 3D computer modeling
(Fig. 4) where no a priori constraints on the shape and
arrangement of the precipitates were imposed, and all
relevant physically relevant energies were taken into ac-
count [17]. Figure 4 shows that the variant switching gen-
erating large strains can take place in nanodispersions at a
much smaller H-field (comparing to that required for the
single-phase tetragonal crystals).

In this Letter, the theory of coherent inclusions has
been advanced by taking into consideration the principally
anharmonic character inherent to multivariant precipitates
in the frequent cases of alloys with a large misfit between
the phases (1%–10%). We demonstrated that the two-
phase nanostructured alloys can have giant low-hysteretic
strain responses generated by a variant switching within
single-domain coherent nanoprecipitates (Figs. 2–4).
Depending on the system, this results in the shape memory
effects, superelasticity and/or supermagnetostriction. All
of them are new effects for otherwise well studied
precipitation-hardened alloys. In principle, such super
functionalities could be obtained in any nanodispersion

of a low-symmetry phase if the system is sufficiently
hardened to prevent the competing processes such as the
dislocation plasticity and fracture (K should also be suffi-
ciently large in ferromagnetic alloys, see supplemental
Figs. S3–S4 [17]).
The topology of the free energy surfaces exemplified in

Fig. 1 is a key factor determining the characteristics of the
strain responses. The global and local minima of the energy
surfaces describe the stable and metastable orientations
variants of precipitates. The switching between them gen-
erating a large strain is generally hysteretic because it
requires surmounting of the energy barriers (the saddle
points separating the energy wells corresponding to differ-
ent variants). To reduce or even eliminate the hysteresis,
the switching barriers should be minimized. We have
demonstrated that the coherency stress qualitatively
changes the configurational energetics of the nanodisper-
sions in materials with relatively low intrinsic barriers,
reducing or even eliminating the switching barriers and
thus the hysteresis (Figs. 2 and 3). For example, it could
be the case for a precursor state of some decomposing �
phase martensitic alloys (C0 � C44) approaching the
Zener instability [11,26,27] at temperatures above but
close to the martensitic temperature, Ms. In this case, the
formed tweedlike microstructure [18–21] is produced by
the pseudospinodal mechanism [28,29] and consists of
single-domain platelike nanoprecipitates. It follows from
the obtained results that the hysteresis can be further
reduced if the formation of optimized nanostructures is
promoted by proper thermomechanical and/or thermomag-
netic treatments.
The supermagnetostrictive state of ferromagnetic alloys

can be similarly obtained by pseudospinodal decomposi-
tion producing tweedlike nanostructures. Promising sys-
tems to observe this effect is Fe-30at.% Pd alloys that have
about sevenfold elastic softening of C0 and precursor
tweedlike structure consisting of single-domain precipi-
tates of the tetragonal phase [19,21]. In fact, the giant
magnetostriction can be anticipated in a wider class of
the martensitic ferromagnetic shape memory alloys
[20,23,24,30,31] in a frequently observed precursor two-
phase nanostructured state: (i) these alloys can also have
the nanoscale tweedlike nanostructure above Ms, [19–21]
(ii) their ferromagnetic nanoparticles and matrix are
exchanged coupled, (iii) they are elastically highly aniso-
tropic with C0 � C44, and (iv) the underlying single-
domain ordered tetragonal phase usually has large value
of K [23,24]. As suggested by Fig. 4, these materials can
have giant low-hysteretic strain responses to relatively
small H fields.
The authors gratefully acknowledge the support from

DOE under Grant No. DE-FG02-06ER46290 and from
NSF under Grant No. DMR-0704045. The parallel com-
puter simulations were performed on LoneStar at Texas
Advanced Computing Center.

FIG. 4 (color online). Simulated 3D microstructure of a ferro-
magnetic alloy and its longitudinal strain response to a magnetic
field under a biased compression. The computer prototyping was
performed with the same material constants and loading proce-
dures as in Fig. 3(b). In (a), the sizes of the precipitates are on the
order of �10 nm, and the shapes of nanoprecipitates deviate
from the ideal platelets because all physically relevant energies
have been taken into account [17]. In (b), Ms and N are the
saturation magnetization and the demagnetization factor deter-
mined by the shape of the sample, respectively. The curve for the
mixture is the averaged response to H fields applied along all
three h110i directions, which essentially reproduces the average
curve in Fig. 3(b). Comparing to the responses of single-phase
crystals simulated under the same conditions, the strain response
of a two-phase mixture is significantly enhanced, especially at
small H field.
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