PRL 109, 115701 (2012)

PHYSICAL REVIEW LETTERS

week ending
14 SEPTEMBER 2012

Nucleation and Growth in Shock-Induced Phase Transitions and How they Determine
Wave Profile Features

Jidong Yu, Wenqiang Wang,* and Qiang Wu
Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics,

China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
(Received 23 November 2010; published 11 September 2012)

Wave profile measurement and interpretation play a central role in shock physics research. We propose
an approach to revealing the direct link between the wave profile and nucleation and growth process in
shock-induced phase transition. Through phase field simulations, we show for the first time that it is
possible to explain experimentally measured wave profiles directly from the viewpoint of nucleation and
growth, and constrain from such profiles real nucleation and growth scenarios that are otherwise

impossible to study.
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Introduction.—Despite five decades of studies of phase
transitions under shock wave loading [1], the nucleation
and growth mechanisms underlying such extremely rapid
and complex phenomena are still poorly understood. In
particular, where does the product phase nucleate? How
fast do the phase boundaries propagate? How do different
domains of the product phase interact with one another?
And how does this nucleation and growth scenario influ-
ence wave propagation? None of these questions have been
adequately addressed due to a lack of suitable means of
investigation.

On the other hand, wave profile measurement and inter-
pretation play a central role in shock physics research.
Theoretically, much information about the dynamic material
response can be deduced from a wave profile. However,
what information can be obtained solely depends upon how
to interpret the wave profile. Conventionally, experimental
wave profiles associated with phase transition are simulated
and understood by solving a system of equations including
the hydrodynamic equations, a constitutive equation, and a
phenomenlogical kinetic law [2—4]. The constitutive equa-
tion is constructed based on the assumption that a phase
transforming material is a mixture of multiple phases. It
relates the time variation of pressure and temperature to the
variation of mass fractions (of different phases) and density.
The kinetic law gives the time rates of change of mass
fractions. This approach is useful in the phenomenological
explanation of experimental wave profiles and in simula-
tions for engineering applications. However, it cannot reveal
from a wave profile any of the microscopic or mesoscopic
mechanisms of a phase transition. In this sense, the useful-
ness of experimental wave profiles as an important window
for studying shock-induced phase transition is largely
unexplored.

In this Letter, we show that through direct numerical
simulation of nucleation and growth, one can clearly reveal
the direct link between a wave profile and the nucleation and
growth process. In this way, once the simulation reproduces
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an experimental wave profile, the real nucleation and growth
scenario is constrained, and the wave profile is explained.
We regard this as a new, mechanism-based approach to
studying shock-induced phase transitions.

Equations.—The theoretical basis of our approach is the
phase field method, which is a very powerful tool for model-
ing microstructure evolution [5—11]. It describes a micro-
structure using a set of order parameters whose temporal
evolution is governed by the Allen-Cahn (time-dependent
Ginzburg-Landau) equation. We assume the phase transition
involves only two phases, which is the case for most phase
transitions under shock wave loading. Furthermore, for the
reasons discussed in the Supplemental Material [12], we
neglect the variants of the product phase that may appear as
a higher symmetry phase transforms to a lower symmetry
phase (e.g., the martensitic phase transformation in shape
memory alloys [13]). Hence, we need only a single order
parameter ¢, with = 0, ¢ = 1,and 0 < ¢ < 1 represent-
ing the initial phase, the product phase, and the interface
between the two phases, respectively. The Allen-Cahn equa-
tion then reads
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where L is the kinetic coefficient, 8 is the gradient energy
coefficient, p is the mass density, and g is the specific (per
unit mass) Gibbs free energy.

The Gibbs (Helmholtz) free energy is, in general, a
function of stress (strain) tensor and temperature. (In the
phase field theory it is also a function of order parameter.)
However, while it is possible to construct such a function for
a thermoelastic material [9-11,14], it is much more difficult
to do so for phase transforming solids under shock wave
loading. This is because most of these materials plastically
yield before changing their phase, which complicates the
description of the deviatoric behavior. (For example, both
the yield stress and shear modulus may vary with pressure
and temperature, and the former may also change with strain
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and strain rate.) Because of this complexity, all the existing
theoretical works on shock-induced phase transition have
included only the volumetric but not the deviatoric contri-
bution in constructing the free energy function [1-4,15,16].
Nevertheless, this is a good approximation for many mate-
rials (especially for metals) because their phase transition
pressures are far in excess of their yield stresses. We make
the same simplification in our approach, so the free energy
in Eq. (1) can be written as g(P, T, ¢) where P is pressure
and T is temperature. Levitas ef al. [11] derived a large
strain Landau potential that includes the deviatoric contri-
bution and anticipated that it can be easily extended to shock
wave problems. This may be true for thermoelastic materials
but not for most materials of interest to the shock physics
community.

To derive g(P, T, ¢), let us assume that the specific (per
unit mass) internal energy ¢ and volume v can be obtained
by interpolation between the initial (1) and product (2)
phases:

e(P,T, ) =[1 = h($)le\(P, T) + h(¢)ex(P, T), (2)

v(P, T, ¢) =[1 = h($)wi(P,T) + h(¢)v,(P, T), (3)

where h(¢) = 3¢* — 2¢3 is the interpolation function.
Then, based on these two equations and the thermodynamic
relation de = Tds — Pdv, one can derive the specific
entropy s = [1 — h($)]s; + h($)s, + x(¢), where x(¢b)
is an integration constant (see details in the Supplemental
Material [12]). Substituting the entropy together with
Egs. (2) and (3) into the thermodynamic relation g = e —
Ts + Pv, one finally gets

g(P. T, $)=[1—h()g\(P.T) + h()g2(P, T) + TW ().

“

Here we have followed Refs. [5-8] to rewrite the term y(¢)
in the entropy as —Wf(¢), so TW is the energy hump
between the two phases, and f(¢) = ¢p*(1 — ¢)? is a
double-well function.

We now derive the phase transition constitutive relation.
We still begin with Egs. (2) and (3). Following Ref. [2], we
take time derivatives of these two equations and substitute
the adiabatic condition é = — Pv into them to eliminate ¢,
then we readily obtain the relation between (P, T) and
(¥, ), which is the desired constitutive relation,

)

where M is a 2 X 2 matrix whose details are given in the
Supplemental Material [12].

Finally, Egs. (1) and (5) are coupled with the governing
equations of hydrodynamics. The wave propagation and
nucleation and growth scenario [17] in shock loaded media
are simulated by solving these equations with the finite
element method [18]. Other important issues, including the

spatial-temporal resolution of the simulation; the phase
field parameters L, B, and W; and the mesh independence
of simulation results, are discussed in the Supplemental
Material [12].

Examples.—Some typical examples are given below to
show how different nucleation and growth scenarios can
lead to different wave profile shapes. The details of the
computational models are given in the Supplemental
Material [12].

We first qualitatively consider the universal split wave
structure with the focus on its transition zone. It is experi-
mentally observed that the slope of this zone can be either
negative, zero, or positive. Correspondingly, one sees a
loop or a flat or ramped plateau on the wave profile
[4,19-21]. A model of shock loaded bismuth is used to
study this problem. We find that within some distance from
the drive surface, the transition zone of the wave profile
always has a negative slope, and this pressure (and particle
velocity) decrease is caused by the rarefaction waves emit-
ted from the growing product phase domains (see movies
M1, M2 and M3 [12]). The wave profile evolves with
propagation distance, and what it will look like at a greater
distance is fundamentally determined by the nucleation
condition and kinetic coefficient. Figure 1 shows four
simulated free surface velocity histories of the shocked
Bi sample. Curve A is obtained at sufficiently high kinetic
coefficient and nucleation density. It has a perfect split
wave structure and has reached the equilibrium state be-
cause the phase transition proceeds very rapidly. At mod-
erate kinetic coefficient and nucleation density, one easily
obtains a wave profile (curve B) whose transition zone has
a negative slope. However, to make that slope positive
(curve C) is only possible through reducing the nucleation
density gradually along the loading direction. In both cases
(i.e., curves B and C), a flat transition zone (curve D) can
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FIG. 1 (color online). Shocked Bi free surface velocity histor-
ies. The kinetic coefficients (in Pa~!'s™!) for curves A, B, C, and
D are 3.0, 0.15, 0.15, and 1.0, respectively. The nucleation
densities (in wm~2) for A and B are 0.037 and 0.017, respec-
tively. The nucleation distribution is the same for C and D, with
the nucleation density gradually decreasing along the loading
direction from 0.018 to 0.0007.
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FIG. 2 (color online). Ramp loaded Bi/LiF interface velocity
histories. The kinetic coefficients (in Pa~!s™!) for curves A, B,
C, and D are 125, 12.5, 12.5, and 12.5, respectively. The
nucleation densities (in wm~2) are 0.8, 0.08, 0.04, and 0.03,
respectively.

be obtained at some higher kinetic coefficient. However,
such a plateau is different from the equilibrium state shown
in curve A.

The situations under ramp wave loading are similar but
simpler. Four simulated wave profiles are shown in Fig. 2.
Equilibrium is again reached very rapidly at sufficiently
high kinetic coefficient and nucleation density (curve A).
Then, with decreasing kinetic coefficient and/or nucleation
density, the slope of the transition zone successively becomes
negative (B), zero (C), and positive (D). The nucleation
density is no longer required to decrease along the loading
direction to obtain a ramped transition zone.

We have also quantitatively simulated the recent shock
compression experiments on iron [20] and ramp compression
experiments on bismuth [21]. Shown in Fig. 3 (corresponding
to Fig. 2 in [20]) are the simulated and experimental
Fe:sapphire window interface velocities. The corresponding
nucleation and growth scenario in polycrystalline iron is
shown in movie M4 [12]. Note that curves in Fig. 3 are
time shifted for clarity while the time in the movie is the
real elapsed time. We find that the « to e transition must not
go to completion to match the experimental wave profiles,
and this incomplete transition is not due to the short time
scale butis due to an insufficient driving force. This picture is
consistent with results from both static and nanosecond
shock experiments. For instance, Giles et al. [22] estimated
that 40% of the « phase was still present at 16.3 GPa in their
static high-pressure experiment, Wang et al. [23] found that
10% of the « phase still persisted at 18.6 GPa (the highest
pressure of their static experiments), while at higher pres-
sures (approximately over 30 GPa) Hawreliak et al. [24]
observed a complete transformation within a few nanosec-
onds. (The two-phase region was found to be between 13 and
30 GPa, but unfortunately the fractions of the two phases
could not be deduced.) The impact induced peak pressure in
our problems is about 16 GPa. For the polycrystal sample, the
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FIG. 3 (color online). Shocked Fe:sapphire interface velocity
histories. Red dashed-dotted curves are the simulated results.

loading part of the wave profile is well reproduced by ran-
domly forbidding 35.4% of the finite elements to transform
(so the & phase can only nucleate and grow in the other finite
elements). However, the simulated release profile associated
with the € to a reverse transition deviates from the experi-
mental one, indicating that the simulated reverse transition
proceeds more rapidly. The reason may be complex, and
work is under way to improve the model. In the single crystal
case, the fraction of the residual « phase is found to be 67.2%.
The simulation captures the loop feature of the wave profile.
However, the peak velocity is 6% lower than the experimen-
tal data, which we think is due to the crystal properties not
considered in our model.

For the ramp compression of bismuth, our simulation
results are compared with the experimental data in Fig. 4
(corresponding to Fig. 2 in [21]). As an example, the
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FIG. 4 (color online). Ramp loaded Bi/LiF and Bi:sapphire
interface velocity histories. Red dashed-dotted curves are the
simulated results.
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FIG. 5 (color online). Ramp loaded Bi:sapphire interface
velocity histories. Numbers indicate the interfacial nucleation
densities in um™!. Purple squares are the experimental data
(trace e in Fig. 4).

nucleation and growth scenario corresponding to curve d is
shown in movie M5 [12]. Note that curves in Fig. 4 are
time shifted for clarity while the time in the movie is the
real elapsed time. All the simulations showed the effect on
the wave profile of nucleation at the sample-window inter-
face. In fact, without considering such interfacial nuclea-
tion, there is no way to fit the simulated wave profiles to
the experimental profiles. This raises a serious question: As
measurements are always made at interfaces (including
free surface), to what extent does a wave profile reflect
the information of the phase transition inside a material?
Figure 5 gives an example of how the interfacial nucleation
affects the Bi:sapphire interface velocities. The green
dashed curve, obtained by assuming no interfacial nuclea-
tion, represents the main phase transition signal that origi-
nates at the drive surface and evolves through the sample.
By comparing this curve with the other two, it can be seen
that the interfacial phase transition can reduce the main
phase transition signal, and may even produce a small
plateau or loop on the wave profile if the interfacial nu-
cleation density is high enough. Note that both the simu-
lated and experimental curves at initial temperatures of
343 and 463 K show these features. When a window with a
lower impedance than that of the sample is used (e.g., the
Bi/LiF case), its unloading effect hinders the nuclei growth
on the sample-window interface, so the signature on the
wave profile of the interfacial nucleation is reduced. Such a
signature would totally disappear if the measurement was
made on free surface.

Summary.—A new, mechanism-based approach has
been proposed to better understand shock-induced phase
transition. It allows one to explain experimentally mea-
sured wave profiles from the viewpoint of nucleation and
growth, and more importantly, constrain the real nucleation
and growth scenarios that are otherwise impossible to
probe. Such inferred scenarios are meaningful at least in
the statistical sense and at the coarse grained level.

As is shown in the Supplemental Material [12], both the
gradient term and the double-well potential term in Eq. (1)
can be dropped at the microscale; therefore, our approach
resembles known mixed phase models [2-4]. However, in
contrast to these models, our approach describes a discrete
microstructure rather than a continuous, smeared distribu-
tion of parent and product phases. Also, unlike traditional
phase field models, our approach is scale-free because of the
absence of the gradient term, and hence, allows for simula-
tions at much larger length and time scales. In this sense, it is
similar to the microscale model developed by Levitas et al.
[9] although the problems and details are different.

Finally, due to the extreme complexity of the problem,
our study does not take into account issues such as the
mechanism of nucleation (e.g., from dislocations and grain
boundaries), anisotropic growth, and martensitic variants
and related nanostructures, etc., However, it does take into
account the two most important issues (i.e., the spatial
distribution of nucleation sites and the propagation of
individual phase boundaries.) and can be a good starting
point for further research.

We thank R.F. Smith for providing the experimental
wave profile data, and L. Truskinovsky for sending his
papers on martensitic phase boundaries. This work was
supported by the Defence Technology Development
Program (A1520070078), the Natural Science Foundation
of China (11072228), and the Key Laboratory Science
Foundation (9140C6711021007, 9140C6701011101).

Note added.—Recently, we became aware of two papers
on the phase field modeling of impact induced phase trans-
formations in shape memory alloys (NiAl and NiTi, respec-
tively). Both have considered martensitic variants. However,
in Ref. [25], wave profiles were not studied, and the simu-
lations were on nanoscale which is too small compared with
real experiments; Ref. [26] simulated experimental wave
profiles with a very coarse finite element mesh (30 pwm)
obtaining unsatisfactory results. We feel that both works can
be improved by considering equations of state specifically
developed for the shock loading condition [27,28].
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