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We report results for the temperature profiles of turbulent Rayleigh-Bénard convection (RBC) in the

interior of a cylindrical sample of aspect ratio � � D=L ¼ 0:50 (D and L are the diameter and height,

respectively). Both in the classical and in the ultimate state of RBC we find that the temperature varies as

A� lnðz=LÞ þ B, where z is the distance from the bottom or top plate. In the classical state, the coefficient

A decreases in the radial direction as the distance from the side wall increases. For the ultimate state, the

radial dependence of A has not yet been determined. These findings are based on experimental

measurements over the Rayleigh-number range 4� 1012 & Ra & 1015 for a Prandtl number Pr ’ 0:8

and on direct numerical simulation at Ra ¼ 2� 1012, 2� 1011, and 2� 1010, all for Pr ¼ 0:7.
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Turbulent convection of a fluid contained between two
horizontal plates separated by a distance L and heated
from below (Rayleigh-Bénard convection or RBC) [1–3]
is a system in fluid mechanics with many features that
are of fundamental interest. It is also a phenomenon
with numerous astrophysical [4–6], geophysical [7–12],
and technological [13,14] applications. Nonetheless some
of its properties remain incompletely explored and
understood.

In turbulent RBC, a ‘‘classical’’ state exists below a
transition range to an ‘‘ultimate’’ state; for the fluid used
by us the transition range extends from Ra�1 ’ 2� 1013 to
Ra�2 ’ 5� 1014 [15] (Ra is a dimensionless measure of the
applied temperature difference). For the classical state it is
known from experiment (see, for instance, Refs. [16–23])
that approximately half of the applied temperature differ-
ence �T � Tb-Tt (Tb and Tt are the temperatures at the
bottom and top of the sample respectively) is sustained by
two thin thermal boundary layers (BLs), one just below the
top and the other just above the bottom plate. These BLs
are laminar, albeit fluctuating [24–26]. The entire interior
of the sample, known as the ‘‘bulk’’, is then approximately
isothermal in the time average, but it also undergoes vig-
orous local temperature fluctuations [27]. For the ultimate
state it was predicted [28] that the BLs are turbulent as
well, due to the shear that is applied by vigorous fluctua-
tions and possibly by a large-scale circulation (LSC) in the
bulk. These turbulent BLs are expected to extend through-
out the sample and to produce a temperature field (beyond

a very thin thermal sublayer adjacent to the plates) that
varies logarithmically with the distance from the plates.
For both the classical and the ultimate state, we found

from experiment that beyond a thin BL or thermal sublayer
(which was unresolved by experiment) the temperature
TðzÞ and its root-mean-square (rms) fluctuation �ðzÞ vary
logarithmically as a function of the distance z from the
bottom plate. For the classical state these results were
confirmed and extended by direct numerical simulation
(DNS). These findings agree with the logarithmic depen-
dence predicted for the ultimate state aboveRa�2 [28], but to
our knowledge there is no theory at present that predicts a
logarithmic temperature profile in the bulk for Ra< Ra�1.
We believe that the discovery of logarithmic profiles is an
important step towards developing a more fundamental
understanding of the bulk.
The apparatus [29,30] and the numerical method [31,32]

were described before. In the experiment we used sulfur
hexafluoride at pressures up to 19 bars and at Tm ’ 21 �C
as the fluid. The Prandtl number Pr was 0.79 (0.86) near
Ra ¼ 4� 1012 (1015). The sample was tilted slightly, with
its axis at an angle of 14 mrad relative to gravity. This
assured that any remnants of a LSC that survive at these
large Ra [15] would, on average, choose a preferred azi-
muthal up-flow and down-flow orientation (see, for in-
stance, Refs. [33,34]). The tilting had no other effects on
our results (for details, see Ref. [30]). Two sets of thermis-
tors were installed for the temperature-profile measure-
ments. One was located at what would be the preferred
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down-flow orientation at lower Ra, and the other was
removed from the first in the azimuthal direction by an
angle �. Each set consisted of eight thermometers which
were located in the fluid 1:0� 0:1 cm from the side wall.
The eight thermistors were located at z ¼ 4:0, 6.1, 8.1,
12.1, 16.1, 32.2, 64.2, and 110.5 cm, with an uncertainty
of the vertical position of 0.1 cm.

We present experimental measurements over the
range 4 � 1012 & Ra & 1015. They are for a single
ðR-rÞ=L ¼ 0:0045 (R ¼ D=2 and r is the radial coordi-
nate). This location is well inside the bulk; the DNS data at
Ra ¼ 2� 1012 showed that the viscous BL only extends to
ðR-rÞ=L � 0:0008. We also analyze DNS data for Pr ¼ 0:7
and Ra ¼ 2� 1010, 2� 1011, and 2� 1012 [31,32] for a
cylindrical sample of aspect ratio � � D=L ¼ 0:50
(D is the diameter). They cover the entire radial position
range 0 & ðR-rÞ=L & 0:25. Both experiment and DNS
show that, through much of the bulk, the dimensionless
time-averaged temperature�ðzÞ � ½hTðzÞi � Tm�=�T [we
denote the time average by h. . .i and Tm � ðTb þ TtÞ=2]
can be represented well by

�ðzÞ ¼ A� lnðz=LÞ þ B: (1)

From the experiment we also find that the rms temperature

fluctuations �ðzÞ � h½TðzÞ � hTðzÞi�2i1=2=�T are consis-
tent with a logarithmic dependence on z, and represent
them by

�ðzÞ ¼ C� lnðz=LÞ þD: (2)

The DNS data show that the amplitude AðrÞ in the classical
state is largest near the side wall and decreases as the
distance R-r from the wall increases.

Typical data sets for �, each based on the 16 time-
averaged temperatures, are shown in Fig. 1(a) as a function
of z=L on a logarithmic scale. The stars (blue, shown only
for Ra ¼ 1:08� 1015) are results at the preferred down-
flow and up-flow orientation of the LSC. They reveal a
small difference at the two locations which is typical in
size of all other measurements. We attribute this difference
to the influence of remnants of the LSC on the temperature
profiles [35]. Henceforth, we consider only the average at
each vertical position of the two data sets, as shown by the
solid symbols in the figure. The lower (upper) two data sets
are for the ultimate (classical) state. Except at the largest
z=L, the data fall on straight lines and thus are represented
well by Eq. (1). In the ultimate state, the logarithmic depen-
dence is followed within the uncertainty of the data for more
than a decade of z=L, from z=L ¼ 0:018 to z=L ¼ 0:3,
corresponding to a physical length up to 0.64 m. A signifi-
cant deviation is seen only at the largest z=L ¼ 0:5, i.e.,
at the sample center. For the classical state, measurable
deviations from the logarithmic form occur already at
z=L ¼ 0:3. Note that these deviations are similar to what
is known for the logarithmic profiles in pipe flow, which
also do not extend right to the center of the pipe.

In a sample that conforms perfectly to the Oberbeck-
Boussinesq approximation, we would expect another loga-
rithmic dependence emanating from the top plate to meet
the data shown in the figure at Tm (i.e., at � ¼ 0) and
z=L ¼ 1=2. However, in the experiment we find that
�ðz=L ¼ 1=2Þ< 0, albeit only by 0.006 (0.028) for
Ra ’ 1013 (1015). Results for � � ðTc-TmÞ=�T are given
in Fig. 2(e). We do not know the reason for this offset.
However, it will necessarily lead to a small departure from
the logarithmic dependence because the two branches, one
coming from the bottom and the other from the top plate,
must have a continuous derivative at z=L ¼ 1=2 where
they meet. For a quantitative analysis we therefore fit
Eq. (1) only to the five points with z=L & 0:08. The
resulting functions are shown as the lines in the figure,
and the parameters A and B are given in Figs. 2(a) and 2(b).
The offset �< 0 also shifts the constant B in Eq. (1). The
corrected parameter B-� is shown in Fig. 2(b) as open
circles. Although B and � varied strongly in the ultimate
state, A and B-� are essentially constant above Ra�2.
The rms temperature fluctuations� are shown inFig. 1(b).

In analogy to recent measurements for turbulent pipe flow
[36], these fluctuations also follow a logarithmic form.
Also in this case the relevant equation [Eq. (2)] was fitted
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FIG. 1 (color online). Results at the radial location ðR-rÞ=L ¼
0:0045. (a) �ðzÞ � ½hTðzÞi-Tm�=ðTb-TtÞ and (b) �ðzÞ ¼ h½TðzÞ-
hTðzÞi�2i1=2=ðTb-TtÞ as a function of vertical position z=L.
Vertical dotted line: sample center at z=L ¼ 0:5. The data are
for Ra ¼ 4:9� 1012 (triangles, green), 1:18� 1013 (squares,
red), 7:9� 1014 (diamonds, purple), and 1:08� 1015 (circles,
blue). Diamonds and circles in (b) are very close to each other.
Stars are results at the preferred down-flow and up-flow orienta-
tion of the LSC for Ra ¼ 1:08� 1015. All other symbols are
averages of the two locations. The solid symbols (z=L & 0:08)
were used for the fits of Eq. (1) or (2) to the data. The lines are
those fits.
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to the data only for z=L & 0:08 to determine C and D,
which are given in Figs. 2(c) and 2(d).

As discussed above, there is a range of Ra which extends
from Ra�1 to Ra

�
2 (the vertical dotted lines in the figure) over

which the transition from the classical to the ultimate state
takes place [15]. The locations of Ra�1 and Ra

�
2 are particu-

larly noticeable in the data for B and �. In the transition
region, the parameters scatter more than above or below it
because the state assumed by the system can vary from one
experimental point to another.

In Fig. 3 we show results for �ðzÞ from DNS [31,32].
They are for the same radial position ðR� rÞ=L ¼ 0:0045
as that of the experiment, and are based on azimuthally and

time-averaged temperature data. In this (and the following)
figure we show the averages of the profiles determined in
the top and the bottom half of the sample. As for the
experimental data, the profile at z=L * 10�2 can be de-
scribed well by Eq. (1). Figure 4 gives the DNS results for
A and B as a function of the radial position ðR-rÞ=L, based
on the temperature data for 10�2 	 z=L 	 10�1. In this
figure one sees that there is excellent agreement between
the values of A and B measured in the experiment and the
simulations when B from the experiment is corrected by
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FIG. 2 (color online). (a), (b), (c), and (d) respectively show
the parameters A, B, C, andD obtained by fitting Eqs. (1) and (2)
to the experimental temperature and fluctuation profiles, and
(e) gives the deviation � � ðTc-TmÞ=�T of the temperature
Tc ¼ Tðz=L ¼ 1=2Þ from the mean temperature Tm, all as a
function of Ra. The open circles in (b) represent B-�. All data
are for a radial position ðR-rÞ=L ¼ 0:0045. The vertical dotted
lines indicate the locations of Ra�1 and Ra�2. The solid lines (red)

are fits of the function A ¼ a� log10ðRaÞ þ b to the data with
Ra< Ra�1. The extrapolation to Ra ¼ 2� 1012 (open circles,

green) yielded A ¼ �0:0212, B ¼ �0:0296, and� ¼ �0:0098.
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FIG. 3 (color online). �ðzÞ as a function of z=L at a radial
position ðR-rÞ=L ¼ 0:0045 from DNS for three values of Ra,
Pr ¼ 0:7, and � ¼ 1=2. Averages of the profiles measured as a
function of distance from the bottom and the top plate are shown.
The thin dashed straight lines are fits of Eq. (1) over the range
0:01 	 z=L 	 0:1 to the data (the fitting interval is indicated by
two short dashed vertical lines).
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FIG. 4 (color online). DNS results for A and B in Eq. (1) for
three values of Ra as a function of ðR-rÞ=L on a logarithmic
scale. Coefficients from fits to the averages of � obtained as a
function of distance from the bottom and the top plate are shown.
In each panel, the open circle (green) corresponds to the ex-
trapolation of the experimental data for A and B as shown in
Figs. 2(a) and 2(b) to Ra ¼ 2� 1012. The open diamond in-
dicates the value of B-�, see Figs. 2(e) and 2(b).
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the offset � at z=L ¼ 0:5 [see Fig. 2(e)]. In addition, the
figure reveals that the magnitude of A is largest near the
side wall and that it decreases (approximately logarithmi-
cally) as the sample interior is approached. Thus, the DNS
indicates that the logarithmic vertical temperature profile is
strongly influenced by the existence of the side wall.

In this Letter, we reported on results obtained by using a
combination of experiment and DNS to study the interior
of turbulent RBC. For the classical state, which exists for
Ra< Ra�1 and which has laminar BLs adjacent to the top

and bottom plates, we find that the bulk which is found
between these two layers sustains a nontrivial and interest-
ing temperature field �ðz=L; r=LÞ. Whereas it had gener-
ally been assumed that the temperature in the sample
interior is either constant or varying linearly and slowly
in space, we find that � varies logarithmically with dis-
tance from the plates over a wide range of z=L. The rms
temperature fluctuations show similar variations. The am-
plitude of the logarithmic profile is largest near the side
wall. Its origin remains unclear. On the one hand, one may
speculate that it is the result of the diffusion of enthalpy
carried from the BLs into the interior by plumes, but a
model for this process which would yield a logarithmic
distribution is not known to us. On the other hand, the
logarithmic variation suggests a possible relationship to the
well-known logarithmic velocity profiles in turbulent shear
flows discussed originally by von Kármán [37] and Prandtl
[38] (for a recent review, see Ref. [39]), and to the recently
discovered logarithmic variation of turbulent fluctuations
in pipe flow [36]. Perhaps turbulence in the BL may not be
a necessary condition for logarithmic profiles—the spatial
constraints of the turbulent eddies in the bulk through a BL
of Prandtl-Blasius type (with the wall or plate behind it)
may also be sufficient for such a logarithmic profile.

In the ultimate state, which exists above Ra�2 [15,40], it
was predicted [28] that the BLs are turbulent and that they
extend vertically throughout the entire sample; thus, there
is no ‘‘bulk’’ in the same sense as there is for the classical
state. In analogy to turbulent shear flows, a logarithmic
temperature profile due to the turbulent BLs was predicted
to extend from each plate deep into the sample, with the two
profiles meeting at half height. Indeed, the experimental
measurements in the ultimate state do find a logarithmic
dependence of the temperature on the vertical coordinate.
Unfortunately, these large values of Ra are not yet acces-
sible to DNS (and will not be for some time), and experi-
mental results are available only for one radial position.
Thus, the logarithmic variation of the temperature with
distance from the plates that was predicted by Grossmann
and Lohse [28] has not yet been fully confirmed by simu-
lation or experiment.

It is interesting to note that the parameters A and B-� in
Figs. 2(a) and 2(b) do not show any significant variation
over the (unfortunately rather small) accessible range of Ra
in the ultimate state. The corresponding coefficients in

shear flow are also independent of the driving [39], which
in that case is represented by the Reynolds number Re. Also
noteworthy is the fact that the results for � in the ultimate
state shown in Fig. 1(b) show no Ra dependence. This, too,
mirrors the universal logarithmic dependence found in pipe
flow [36]. These comparisons tend to strengthen the like-
lihood that the logarithmic dependences seen in the ulti-
mate state of RBC are indeed related to those found in shear
flows. In distinction to this, in the classical state, the co-
efficients describing � at constant ðR� rÞ=L vary consid-
erably with Ra [see Figs. 1(a), 2(a), and 2(b)], suggesting
that any relationship to the logarithmic dependences in
shear flow, if it exists, is less direct.
We are grateful to the Max-Planck Society and the

VolkswagenStiftung for their support of the experiment. We
thank the Deutsche Forschungsgemeinschaft for financial
support through SFB963: ‘‘Astrophysical Flow Instabilities
and Turbulence.’’ The work of G. A. was supported in part
by the U.S. National Science Foundation through Grant
No. DMR11-58514. The simulation at Ra ¼ 2� 1012

was performed as part of a large-scale computing project
at HLRS (High Performance Computing Center Stuttgart).
R. J. A.M. S. and D. L. thank the Foundation for
Fundamental Research on Matter for financial support.

*Present address: Department of Mechanical Engineering,

Johns Hopkins University, Baltimore, Maryland 21218,

USA.
[1] G. Ahlers, Physics 2, 74 (2009).
[2] G. Ahlers, S. Grossmann, and D. Lohse, Rev. Mod. Phys.

81, 503 (2009).
[3] D. Lohse and K.-Q. Xia, Annu. Rev. Fluid Mech. 42, 335

(2010).
[4] F. Cattaneo, T. Emonet, and N. Weiss, Astrophys. J. 588,

1183 (2003).
[5] F. H. Busse, Chaos 4, 123 (1994).
[6] A. Nordlund, Solar Photosphere and Convection

(Cambridge University Press, Cambridge, England, 2003).
[7] P. Cardin and P. Olson, Phys. Earth Planet. Inter. 82, 235

(1994).
[8] G. Glatzmaier, R. Coe, L. Hongre, and P. Roberts, Nature

(London) 401, 885 (1999).
[9] E. van Doorn, B. Dhruva, K. R. Sreenivasan, and

V. Cassella, Phys. Fluids 12, 1529 (2000).
[10] D. L. Hartmann, L. A. Moy, and Q. Fu, J. Clim. 14, 4495

(2001).
[11] J. Marshall and F. Schott, Rev. Geophys. 37, 1 (1999).
[12] S. Rahmstorf, Clim. Change 46, 247 (2000).
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