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Bistable structures associated with nonlinear deformation behavior, exemplified by the Venus flytrap

and slap bracelet, can switch between different functional shapes upon actuation. Despite numerous

efforts in modeling such large deformation behavior of shells, the roles of mechanical and nonlinear

geometric effects on bistability remain elusive. We demonstrate, through both theoretical analysis and

tabletop experiments, that two dimensionless parameters control bistability. Our work classifies the

conditions for bistability, and extends the large deformation theory of plates and shells.
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Mechanical structures exhibiting multiple stable
morphologies arise in a variety of physical systems, both
natural [1] and synthetic [2–5]. For example, the leaves of
the Venus flytrap can be triggered to snap through from an
open to a closed state in a fraction of a second to capture
insects [1]. Indeed, multistable components have promis-
ing applications in micropumps, valves, shape-changing
mirrors in adaptive optical systems, mechanical memory
cells [5], artificial muscles, bioinspired robots [6], deploy-
able aerospace components [3], and energy harvesting
devices [7].

Multistability of plates and shells associated with non-
linear deformation has inspired many studies over the years
[2–5,8–15], while related bifurcation phenomena in slen-
der structures [16], such as DNA [17,18] and plant tendrils
[19], have also been long investigated [20]. Existing mod-
els of shell structures utilize geometric assumptions or
scaling arguments that greatly simplify analysis, leading
to solutions that have significantly improved our under-
standing of bistability. Nonetheless, these geometric as-
sumptions are typically only valid for small angle
deformations and often do not strictly satisfy the mathe-
matical conditions for geometric compatibility [21], espe-
cially in large deformation cases. Scaling theory has been
employed by Forterre et al. [1], who proposed a minimal
model to explain some of the bistable features of
Venus flytraps, with a dimensionless deformation energy
postulated in lieu of a first-principles derivation, and
Armon et al. [13], who investigated the competition be-
tween bending and stretching deformation within incom-
patible thin sheets. In the latter work, a dimensionless
width was proposed to be the key bifurcation parameter,

with the threshold value obtained through experiments.
While this study is elegant, it did not yield analytic
predictions for the bifurcation threshold; furthermore, the
presence of an a priori unknown quantity (curvature)
in the bifurcation parameter somehow restricts its utility.
Therefore, for large deformations of shells, a more general
elasticity theory framework, that explicitly includes the
nonuniform bending curvature and midplane stretching,
is required.
In this work, we propose an analytically tractable,

reduced-parameter model that incorporates geometric
nonlinearity and accounts for the competition between
bending and in-plane stretching involved when a planar
sheet is mapped into a nondevelopable shape via misfit
strains. We employ this model to perform a comprehensive
examination of bistability, leading to unique predictions
for bifurcation thresholds and bistable morphologies
that are quantitatively validated with a series of tabletop
experiments. More generally, our approach provides a
quantitative means to investigate the role of geometric
nonlinearities in a broader setting, including morphogene-
sis [22–25], film-on-substrate electronics [26–28], and
spontaneous bending, twisting, and buckling of thin films
and helical ribbons [29–35].
We employ a simple experimental demonstration of the

morphological transition from mono- to bistable states
when the dimensions change (either the width increases
or thickness decreases), with all other parameters fixed. To
this end, two pieces of thin latex rubber sheets (thickness
H1, length L, and width W � L) are prestretched by an
equal amount and bonded to an elastic strip of thicker,
pressure-sensitive adhesive (thickness H2) [36] as shown
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schematically in Fig. 1(a), such that the total thickness of
the bonded strip is H ¼ 2H1 þH2. The prestrains along
the two lateral directions were chosen to be equal to 0.28 in
all of the experimental results presented. When released,
the initially flat, bonded laminate deforms into either a
saddle shape [Figs. 1(b) and 1(c)] or one of two nearly
cylindrical configurations [Figs. 1(d) and 1(e)], driven by
misfit strains. More specifically, when the strip is suffi-
ciently narrow or thick, the equilibrium saddle shape is
unique, while if the strip is wide and/or thin, it will bifur-
cate into one of the two nearly cylindrical shapes.

As the starting point of our theoretical approach, we
assume an originally flat elastic sheet of H � W � L,
with a rectangular cross-section and principal geometric
axes along its length (dx), width (dy), and thickness (dz),

deforms into part of a torus shape with variational parame-
ters �1 and �2 (�i ¼ 1=Ri, i ¼ 1; 2) along principal direc-
tions r1 and r2 (which coincide with the geometric axes) as
shown in Fig. 2. A torus can describe a broad range
of possible morphologies, such as a saddle, cylinder,
and sphere, selected by tuning two geometric shape
parameters. Instead of assuming small deformation as in
classical lamination theory, we allow for large deforma-
tions with the associated geometric nonlinearity in the
small elastic strain limit (in the thick sheet); that is, we
only require that �iW � 1. Finally, mapping the sheet
onto the surface of a torus (or part thereof) facilitates
the explicit construction of the strain tensor components
[39]: �xxðt;zÞ¼½cosð�2tÞz�=f1=�1þ½cosð�2tÞ�1�=�2gþ
½cosð�2tÞ�1��1=�2, �yyðt; zÞ ¼ �2z, and �zzðt; zÞ ¼
��ð�xx þ �yyÞ=ð1� �Þ, where t and z denote the arc-

length along r2 and the distance from the midplane of
the shell.

The strip is subjected to effective surface stresses (due
to the thin, misfitting top and bottom layers) of the form
fþ ¼ �f2dy � dy and f� ¼ f1dx � dx (� denotes the

tensor direct product) along the top and bottom surfaces,
respectively. This is equivalent to the case in which a strip
is subjected to only one surface stress f� ¼ f1dx � dx þ
f2dy � dy on the bottom surface, where only the bending

mode of deformation is of interest [31]. For conciseness,
we assume that the principal axes of bending, r1 and r2,

FIG. 1 (color online). (a) Schematics: Two thin latex rubber sheets (the top and bottom sheets, colored blue and yellow, respectively)
were prestretched along perpendicular directions and bonded to a much thicker elastic strip. When released, the bonded multilayer
sheet deforms into one of the following shapes. Here, H denotes the overall thickness, while angle � measures the misorientation of
the principal axes of curvature (r1 and r2) from the principal geometric ones (dx and dy, respectively). (b) A saddle shape for a small,

thin square sheet (H ¼ 1:5 mm, L ¼ W ¼ 24:0 mm). (c) A saddle shape for a thick square sheet (H ¼ 2:5 mm, L ¼ W ¼ 48:0 mm).
(d) A stable, nearly cylindrical shape (curving downwards) for a thin, wide strip (H ¼ 1:5 mm, L ¼ W ¼ 48:0 mm). (e) The other
stable, nearly cylindrical configuration (bending upwards) for the same sheet as in (d). The nearly cylindrical shape smoothly
transitions into a doubly curved shape near the edges.

FIG. 2 (color online). Deformation of an originally flat elastic
strip into a section of a torus with variational parameters �i

(�i ¼ 1=Ri, i ¼ 1, 2). Here, r1 and r2 denote the principal
bending axes and t denotes the arclength measured from the
circle of radius R1. The red dotted line at t is shorter than the red
solid line, indicating an extra strain due to geometric constraints.
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coincide with the principal axes of the surface stresses, i.e.,
the geometric axes, dx and dy ( justified below).

Continuum elasticity theory gives the potential

energy density per unit length of the strip as � ¼
RW=2
�W=2½f�: �jz¼�H=2 þ

RH=2
�H=2

1
2�: C: �dz�dt, where C

denotes the fourth-order stiffness tensor. By employing the
expressions for the strain components and expanding in
�W � 1 (and noting that H � W), it is straightforward to
show that

� ¼ �s þ�b þ�g þOðEH3W3�4; EHW7�6Þ; (1)

where �s ¼ �ðf1�1 þ f2�2ÞWH=2 denotes the con-
tribution from the surface stresses, �b ¼ ð�2

1 þ �2
2 þ

2��1�2ÞEWH3=24ð1� �2Þ is the bending energy,
and �g ¼ EHW5ð�1�2Þ2=640ð1� �2Þ is the stretching

energy arising from the geometric nonlinearity associated
with non-zero Gauss curvature. In general, terms associ-
ated with bending deformation are of the form
�EWH3�2ð�WÞ2n, where n ¼ 0; 1; 2; 3; . . . , while those
associated with Gaussian curvature are of the form
�EHW5�4ð�WÞ2m, where m ¼ 0; 1; 2; 3; . . . . Also, in the
special case of spherical bending (i.e., �1 ¼ �2 ¼ 1=�),
�g ¼ EHW5=½640ð1� �2Þ�4� to leading order, in agree-

ment with classical Föppl–von Kármán theory [40,41].
Since �b � EWH3�2 and �g � EHW5�4, a simple

scaling analysis suggests that when W � ffiffiffiffiffiffiffiffiffiffi
H=�

p
, �b �

�g, and the nonlinear geometric effect becomes negli-

gible. That is, bistability is controlled by a dimensionless

geometric parameter � � W
ffiffiffiffiffiffiffiffiffiffi
�=H

p
[13], where the curva-

ture � ¼ maxfj�1j; j�2jg. In the limit � � 1, �g can be

ignored, and the laminate develops into a saddle shape,
as shown in Figs. 1(b) and 1(c) (when f1 ¼ �f2). In this
case, applying the stationarity conditions (@�=@�i ¼ 0,
i ¼ 1, 2) to Eq. (1) and neglecting �g, we recover the

analytical results in Ref. [31]: �1 ¼ 6ðf1 � �f2Þ=EH2 and
�2¼6ðf2��f1Þ=EH2, with�	 ¼�3ðf21�2�f1f2þf22Þ=
2EH. On the other hand, in the limit where � ! 1, the
system bifurcates into two stable, nearly cylindrical con-
figurations, for which one of the principal curvatures
becomes very small over the interior of the shell, as shown
in Figs. 1(d) and 1(e) and the Supplemental Material [42].

The parameter � is essentially the same as the one
proposed by Armon et al. [13]. While � quantitatively
captures the effect of the geometric nonlinearity, it contains
an unknown parameter, the curvature, which significantly
restricts its utility. This deficiency is remedied as follows.
Since �� f=EH2 (where f � maxfjf1j; jf2jg), we define a
new dimensionless parameter, � � ffiffiffiffiffiffiffiffiffiffiffiffiffi

f=EH
p

W=H, which
involves only a priori known material and surface stress
parameters. We demonstrate that this new parameter arises
naturally by considering the case f1 ¼ �f2 relevant for
our experiments and those of Armon et al. [13], and derive
an analytical expression for the bifurcation threshold.

Applying the stationarity conditions to Eq. (1) and
setting f1 ¼ �f2 yields ð�1 þ �2Þ½�1�2 þ 80ð1þ �ÞH2=
3W4� ¼ 0. Therefore, either �1 þ �2 ¼ 0 which corre-
sponds to the saddlelike shape, or �1�2 ¼ �80ð1þ �ÞH2=
3W4, which, when real solutions exist, yields the
bifurcated solutions. A bifurcation occurs when both �1 þ
�2 ¼ 0 and �1�2 ¼ �80ð1þ �ÞH2=3W4 are satisfied, im-

plying that �1 ¼ ��2 ¼ � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
80ð1þ �Þ=3p

H=W2 or � ¼
W

ffiffiffiffiffiffiffiffiffiffi
�=H

p ¼ �c ¼ ½80ð1þ �Þ=3�1=4. Importantly, our pre-
diction for the bifurcation threshold (�c ¼ 2:51 for
� ¼ 0:49) is in excellent agreement with the experimental
result, �c
2:5, found by Armon et al. [13]. Moreover,
stationarity conditions at the bifurcation imply that
�1 � �2 ¼ 2� ¼ 6f	ð1� �2Þ=EH2, or � ¼ 3f	ð1� �2Þ=
EH2. Thus, the bifurcation threshold can also be
expressed as

�c �
ffiffiffiffiffiffiffiffi
f	

EH

s
W

H
¼ �c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� �2Þp ¼

�
80

27ð1� �Þð1� �2Þ
�
1=4

:

(2)

Equation (2), which is the central result of the analysis,
quantitatively expresses the fundamental condition for
bistability in terms of a dimensionless parameter which
only depends on the driving force (surface stress), material
properties, and ribbon dimensions. Although the bifurca-
tion formally occurs at � ¼ �c, since the shape change only
takes place gradually as � increases, we expect the bistable
behavior to manifest only when � � �c.
In comparing theoretical predictions with experiments,

we find that in both Figs. 1(b) and 1(c), � is comparable to
�c 
 1:5 [in (b) � ¼ 1:5; in (c) � ¼ 1:4�, and the sheets
adopt saddle shapes, as expected. On the other hand,
increasing � to 3.1 leads to bistable behavior characterized
by cylindrical shapes, as shown in Figs. 1(d) and 1(e),
respectively. Moreover, for the cylindrical shapes, the
measured radius of curvature (13:1� 0:5 mm) is in
reasonable agreement with the theoretical prediction
EH2=½6fð1� �2Þ� 
 13:8 mm.
We now relax the condition f1 ¼ �f2 and consider the

role of surface stresses on mechanical instability in more
general terms. In the � ! 1 (� ! 1) regime, the geomet-
ric nonlinearity requires that either �1 ! 0 or �2 ! 0
away from edges. Without loss of generality, we assume
that �y ¼ �2 ! 0. In order to examine stability, we first

note that the principal bending axes r1 and r2 do not
necessarily coincide with the geometric axes dx and dy,

but instead form an angle � as shown in Fig. 1(a). In
this case, the potential energy per unit length of the
strip becomes �¼�WHðf1C2þf2S

2Þ�1=2þEH3W�2
1=

24ð1��2Þ, where C � cos� and S � sin�. Minimizing
� with respect to both �1 and � yields two sets of
solutions: (1) �	 ¼ 0 with �1 ¼ 6ð1� �2Þf1=EH2 or
(2) �	 ¼ �=2 with �1 ¼ 6ð1� �2Þf2=EH2. Whether an
extremum configuration (� ¼ 0 or � ¼ �=2) is locally
stable depends on whether �00ð�	Þ�d2�=d�2j�¼�	 �0.

PRL 109, 114302 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

14 SEPTEMBER 2012

114302-3



To this end, we write�00ð0Þ ¼ �6ð1� �2Þðf2 � f1Þf1W=
EH / �f21ð	� 1Þ and �00ð�=2Þ¼�6ð1��2Þðf1�f2Þ
f2W=EH/�	f21ð1�	Þ, where 	 � f2=f1 denotes an-

other key dimensionless parameter. Clearly, whenever
	< 0, both �00ð0Þ> 0 and �00ð�=2Þ> 0, implying the
emergence of two mechanically stable configurations with
one configuration in general being energetically more
favorable than the other. Interestingly, for 	 ¼ �1, the
two stable configurations are degenerate and have the
same energy in the absence of edge effects. On the other
hand, when 0<	< 1, �00ð0Þ> 0 while �00ð�=2Þ< 0,
implying that the �	 ¼ 0 configuration is stable, while
the �	 ¼ �=2 one is mechanically unstable. For 	> 1,
the stabilities of the two extrema are reversed, with the
�	 ¼ �=2 configuration now displaying mechanical
stability. Finally, for the special case 	 ¼ 1, �	ð�Þ is
constant, implying that the shell is in a neutrally stable
state [43]. In this case, the laminate can, in principle, curl
into a nearly cylindrical shape with arbitrary orientation
(at least in the absence of edge effects), and can also easily
transition between these shapes drawn from a continuous
family of neutrally stable configurations. The different
possibilities are illustrated in Fig. 3.

Finally, when edge effects are taken into account, even
when 	 ¼ �1, an asymmetry in dimensions (L � W) can
result in the breaking of the degeneracy between the mini-
mum energy configurations. As shown in Fig. 1(e), the
cylindrical shape in the � � �c limit smoothly transitions
into a more saddle-shaped one with finite Gauss curvature

over a length scale �Wc � �cH
ffiffiffiffiffiffiffiffiffiffiffiffiffi
EH=f

p
as the ends of the

cylinder are approached. Within this transition region, the
total potential energy per unit area can be approximated by
�	

1 ¼ �3ðf21 � 2�f1f2 þ f22Þ=2EH, while for the same

area in the cylindrical part, the energy per unit area is
�	

2 ¼ �3ð1� �2Þf21=2EH. Since �	
1 <�	

2 for 	 ¼ �1,

the edges reduce the overall deformation energy, and the
most effective reduction is obtained for maximizing
the overall edge length. Thus, the laminate will curve along
the long direction, in agreement with the recent results of
Alben et al. [44].
In summary, large shell or plate deformation with

geometric nonlinearity is treated through a novel, analyti-
cally tractable theoretical framework which combines con-
tinuum elasticity, differential geometry and stationarity

principles. Two key dimensionless parameters (� �ffiffiffiffiffiffiffiffiffiffiffiffiffi
f=EH

p
W=H and 	 � f2=f1) are shown to govern struc-

tural bistability. It is noteworthy that � only involves the
driving force (surface stress), material properties, and rib-
bon dimensions, in contrast to the geometric bifurcation

parameter � � W
ffiffiffiffiffiffiffiffiffiffi
�=H

p
introduced by Armon et al. [13],

which involves an a priori unknown parameter (curvature).
On the one hand, whether a structure with linear elastic
properties can exhibit bistability depends on its dimensions
and curvatures (� � �c, or � � �c) due to nonlinear
geometric effects. On the other, even when the necessary
geometric condition is satisfied, the existence of bistability
still depends on a mechanical parameter (	< 0). Our
theoretical analysis also predicts the lifting of ground state
degeneracy (when 	 ¼ �1) due to edge effects [44]. The
nonlinear geometric effects on bistability have been veri-
fied by tabletop experiments, and our theoretical predic-
tions for the bifurcation threshold are also in agreement
with the experimental results of Armon et al. [13].
In a broader sense, our approach provides a means to

quantify and understand the role of nonlinear geometric
effects in multistable structures in a wide range of natural
and engineered systems, such as morphogenesis and me-
chanical instability in biological systems, film-on-substrate
electronics, and spontaneous coiling and buckling of
strained thin films and ribbons. Via reverse engineering,

FIG. 3 (color online). Bistability map in the (f1, f2) space. In (a) the red shading indicates bistable regions while no shading
indicates monostability. The red arrows denote transitions from monostable to bistable states. The total strain energy versus the
orientation of the misfit axis for (b) f2=f1 ¼

ffiffiffi
3

p
, (c) f2=f1 ¼ 1, (d) f2=f1 ¼ 1=

ffiffiffi
3

p
, (e) f2=f1 ¼ �1=

ffiffiffi
3

p
, (f) f2=f1 ¼ �1, and

(g) f2=f1 ¼ � ffiffiffi
3

p
.
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it will also facilitate the design of multistable functional
structures, from bioinspired robots with smart actuation
mechanisms to deployable, morphing structures in aero-
space applications.
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