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Folding a sheet of paper along a curve can lead to structures seen in decorative art and utilitarian

packing boxes. Here we present a theory for the simplest such structure: an annular circular strip that is

folded along a central circular curve to form a three-dimensional buckled structure driven by geometrical

frustration. We quantify this shape in terms of the radius of the circle, the dihedral angle of the fold, and

the mechanical properties of the sheet of paper and the fold itself. When the sheet is isometrically

deformed everywhere except along the fold itself, stiff folds result in creases with constant curvature and

oscillatory torsion. However, relatively softer folds inherit the broken symmetry of the buckled shape with

oscillatory curvature and torsion. Our asymptotic analysis of the isometrically deformed state is

corroborated by numerical simulations that allow us to generalize our analysis to study structures with

multiple curved creases.
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Over the last few decades, origami has evolved from an
art form into a scientific discipline, where folding tech-
niques have been widely applied to fields of engineering,
architecture, and design [1–4], made possible in large
part by methods for the mathematical analysis of folded
surfaces. Although there are artistic and technological
precedents for folding paper along curves [5–10], as seen
in Japanese paper boxes and the ubiquitous box for fries,
how these geometrical structures get their physical shape is
poorly understood, so that the potential associated with
curve folding for constructing (quasi)isometric structures
using real materials and corrugated shells [11,12] is still
only poorly tapped. In this Letter, we consider the geome-
try and mechanics of the simplest case of a curved fold: an
annular elastic sheet folded along a closed, circular curve
that buckles out of the plane to resolve a fundamental
incompatibility between the folded geometry and the ensu-
ing mechanical stresses.

Qualitative experiments with a complete circular annulus
of paper having a concentric, circular crease show that fold-
ing buckles the crease into a saddle [Fig. 1(a)], while the
same crease along a cut annulus remains planar [Fig. 1(b)].
This behavior is a consequence of a fundamental incompati-
bility between the geometry of the fold and the stretching
elasticity of the sheet. As we will see, and as apparent in
Fig. 1(b), the sheet responds to folding by wrapping around
itself to eliminate in-plane mechanical stresses. The closed
annulus, on the other hand, can relax these stresses by buck-
ling. In the limit of the sheet where the thickness is much
smaller than thewidth, which is itself smaller than the length
of the crease, the shape that arises is a balance between the
bending energy of the sheets on either side of the crease, the
energy at the crease itself, and the geometrical constraints
arising from the sheet’s closed topology, similar to that seen

in the mechanics of strips [13], shells [14], and non-
Euclidean objects [15].
We consider an annulus of uniform thickness tand width

2w folded along a central circular crease of radius r (t �
w< r). In the deformed state, the crease is a space curve
parametrized by arc length s, with curvature �ðsÞ and tor-
sion �ðsÞ, and the surfaces on either side of it come together
at a finite fold (or dihedral) angle �ðsÞ. Assuming isometric
deformations away from the crease, the midsurface of
the sheet on either side of the crease is developable. Then
any point on it can be characterized in terms of a set of

FIG. 1 (color online). A photograph of the model built by
cutting a flat annulus of width 2w from a flat sheet of paper
with central circle of radius r. (a) Folding along its center line
buckles the structure out of plane. However, if we cut the
annulus, (b), the structure collapses to an overlapping planar
state, with curvature given by Eq. (1). (c) The inset shows a cross
section of the fold, where the right and the left planes, Xþ and
X�, define the dihedral angle �.
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coordinates (s, v), corresponding to the arc length and the
generators of the developable surface on the inside and
outside of the crease, g� [see Fig. 1(c)], with the coordinates
X�ðs; vÞ ¼ Xðs; 0Þ þ vg�ðsÞ. For developable surfaces,
the generators must also satisfy the condition that g�ðsÞ �
dg�ðsÞ=ds is perpendicular to the crease [16]. Since folding
does not induce in-plane strains, the projection of the crease
curvature onto the tangent plane on either side of the sheet
must remain 1=r. This leads to two geometrical conditions
[8] that relate the dihedral angle of the crease to its spatial
curvature and the angle of the generators of the developable
surface on either side of it. They read
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where �=r and �=r are the curvature and torsion of the
crease, respectively, and �� is the angle between the unit
tangent vector of the crease dXðsÞ=ds and the generator. We
see that �ðsÞ � 1, with equality only when � ¼ �. For a
circular crease concentric with a circular annulus of constant
dimensionless half-width ! ¼ w=r, we find
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to be the dimensionless distance to the boundary along a
generator leaving the crease from a point labeled by the
dimensionless arc length � ¼ s=r.

The energy of the sheet is the sum of the energy of
deforming the sheet on either side of the crease and that
of the fold that connects them. Since the creased folded
surface is piecewise developable, the energy per unit surface
is proportional to the square of the mean curvature [17]. The
mean curvature on either side of the sheet is

H�ð�; vÞ ¼ � cotð�=2Þ csc��
2r½sin�� � vð1� �0�Þ�

; (4)

where ð:Þ0 ¼ d=d�ð:Þ. Then the energy of each surface Eb ¼
B
R
2�
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0 H2�dvd�, where B is the bending stiffness of

the material of the sheet. Carrying out the integral along the
generators, v, explicitly leads to the following scaled bend-
ing energy for the two surfaces:
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We see that Eq. (5) is determined entirely in terms of the
geometry of the crease. To model the fold itself, we use a
phenomenological energy functional measuring the devia-
tion of �ð�Þ from an equilibrium angle �0, which we assume
to be constant, so that the scaled crease energy is as follows:
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where & ¼ Kr=B is the ratio of the crease stiffness K and
the bending stiffness B. This energy reduces to a simple
quadratic expression in the difference �� �0 when �� �0;
although the precise form of this term does not affect our
analytic results, it conforms to our numerical model [18].
The equilibrium shape of the curved crease results from

minimizing E ¼ Eb þ Ec and is characterized by three
parameters: the scaled natural width of the ribbon !, the
natural dihedral angle between the two surfaces adjoining
the crease �0 and the dimensionless crease-surface energy
scale &, subject to appropriate boundary conditions. For
example, an open circular crease has free ends and thus
prefers to remain planar with � ¼ 0, since nonplanarity
would increase both the curvature and torsion (see
Supplemental Material [19]). A closed crease, however,
is frustrated by geometry, forcing it to buckle, a fact that
follows from the inequality � ¼ 1= sinð�=2Þ> 1 when
� < �, which requires

R
d�� > 2�, and is incompatible

with a planar crease with � ¼ 0 [8].
Although geometrical constraints induce buckling, the

resulting fold shapes are determined by minimizing the total
elastic energy consisting of contributions from the sheet
[Eq. (5)] and the fold [Eq. (6)], expressed entirely in terms
of the curvature and torsion of the crease [13,20]. For
relatively narrow but stiff folds, i.e., ! � 1 and & 	 1
are weakly folded, the dihedral angle �0 � �, and hence
� 
 1= sinð�0=2Þ � 1 � 1. Then, we find that the total
scaled energy E ¼ ðEb þ EcÞ=B simplifies to (see
Supplemental Material [19])
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in terms of the scaled curvature � and torsion �. We see that
as & ! 1, the rescaled curvature �!1=sinð�0=2Þ¼1þ�,
the prescribed curvature. The minimal energy crease shape,
therefore, minimizes �2 subject to the constraints of fixed
length and curvature. In this limit, the Euler-Lagrange equa-
tions become ½�00 þ ð1þ �Þ2��0 � 0 at constant curvature
(see Supplemental Material [19]). If � ¼ 0, corresponding
to a dihedral angle �0 ¼ �, the solution to these equations is
infinitely smooth. Otherwise, a solution of continuity class
C4 may be obtained to these equations with � ¼ 1þ � and
oscillating torsion
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The absolute magnitude of the torsion �0 is then determined
by the condition that the curved fold has an arc length 2�r,
and consistent with the four-vertex theorem for closed
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convex space curves, there are four points with vanishing
torsion [21].

To go further, we can carry out an asymptotic analysis of
the Euler-Lagrange equations obtained by minimizing
E ¼ Eb þ Ec; this must be performed by expanding the
shape of the crease around a planar curve of constant
curvature, �0. Following Refs. [13,20], we write � ¼ �0 þ
�� and � ¼ �� and compute the Euler-Lagrange equa-
tions. To lowest order, we obtain an algebraic expression
determining the ideal curvature of the crease �0 for arbi-
trary &, �, and ! (see Supplemental Material [19]), the
curvature of an incomplete or severed planar annular fold
with zero torsion. To next order, we find that both the
curvature and torsion oscillate; a typical analytical solution
is shown in Fig. 2(a), with the inset showing the oscillating
torsion vanishing at the extrema of the curvature (see
Fig. 1). Here, the overall amplitude of � is chosen to close

the curve, with �ð0Þ and �ð�=2Þ parametrizing the solu-
tions (see Supplemental Material [19]).
These qualitative features are also confirmed by direct

numerical minimization of the energy of a triangular mesh
model for the curved origami structure, in which each edge
is treated as a linear spring, with the stretching stiffness
inversely proportional to rest length. We apply restorative
bending forces to the adjacent triangles in each sheet so that
they prefer collinear normals, with the scaled ratio of the
bending stiffness to the stretching stiffness B=Sl2�10�6.
Adjacent triangles that straddle the crease prefer a fixed,
nonplanar dihedral angle [18] (see SI). The presence of a
small but finite extensibility of this model implies that our
simulations relax the isometry of the folding process and
thus allow us to capture how the extension and shear arise in
wide folds [Fig. 2(b)]. We find that the extensional and shear
strains typically localize where the mean curvature becomes
large, consistent with our isometric analytic theory [shown
in Fig. 2(a)].
Moving beyond the simple asymptotic theory for narrow

folds, we consider the dependence of the solution on the
scaled width by using the perturbative shapes as a varia-
tional ansatz in the exact expression for the energy EbþEc.
Since the shapes have a fourfold symmetry, we expect to see
a coincidence between �ð0Þ and �ð�=2Þ. In Fig. 3(a), we
plot j�ð0Þ � �ð�=2Þj for the minimal energy configuration
as a function of the scaled width !. We see that when
! & 0:1, annuli with large & have a nearly constant dihedral
angle around the entire length of the fold, with �ð0Þ �
�ð�=2Þ for the narrowest fold widths. However, for small
&, the energy minimum generically has �ð0Þ � �ð�=2Þ; this
discrepancy increases with the scaled width !. Plotting the
corresponding energy landscape in Figs. 3(b)–3(d) for some
representative values of !, we see that the energy contours
develop forks, because the range of �ð0Þ and �ð�=2Þ are
forbidden by the geometric constraints that the generators of
our two surfaces can intersect only outside the actual sur-
face, else the bending energy diverges.
To avoid the intersection of generators inside the outer

surface, it is required that

�0þ <
sin�þ
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� 1 and �0� >� sin��
vmax�

þ 1; (9)

which expression reduces to j�0j< ð1�!Þ cotð�=2Þ=! at
the points where � ¼ 0. Similarly, to avoid the intersection
of the generators on the inner surface inside the inner
boundary requires the discriminant in Eq. (3) to be posi-
tive, implying a bound on the torsion,
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These geometrical bounds restrict the range of allowed
torsion and thus the buckling of the crease. As a conse-
quence, wide folds will become resistant to deformations
as the sheet quickly reaches a regime where the generators
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FIG. 2 (color online). (a) Perturbative fold of width ! ¼ 0:1
and & ¼ 2=

ffiffiffi
3

p
shaded by mean curvature. The generators are

indicated by the lines on the surface. The inset shows the
dimensionless torsion and curvature of the crease. (b) A simu-
lated fold of width ! � :0994 shaded by local area change
relative to the flat state.
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start to nearly intersect in the neighborhood of � ¼ �=2. In
Fig. 3(d), this is manifested by the presence of large forks
carved out by the forbidden configurations. Since energy
minima occur close to the singularities, our perturbative
expansion of the shape is approximate at best. However,
even at intermediate widths, where the perturbative expan-
sion should be at least qualitatively valid, bifurcation of the
minima show up in the shadows of the prominent forks
observed in Fig. 3(d).

These calculations suggest a second improved ansatz:
�ð2Þ¼�0þ�1cosð2�Þ and �ð2Þ ¼ �0½sinð2�Þ þ 	 sinð4�Þ�,
choosing �0 to close the fold and 	 to minimize the energy.
When 	 ¼ 0, we now find very good agreement with the
perturbative ansatz previously considered. However, we find
that 	 � �0:45 for large widths, which lowers the maxi-
mum of the torsion and better satisfies the singularity bounds
inEqs. (9) and (10).Using & as a fitting parameter,we see that
�ð�=2Þ � �ð0Þ agrees quite well with the numerical solu-
tions for small ! and only diverges from numerical simula-
tions for largewidths around!� 0:08, as shown inFig. 3(a).

Finally, we consider structures built from multiple, con-
centric folds (Fig. 4). Again, the large penalty for stretch-
ing leads to strong geometric constraints connecting the
curvature and torsion of the crease to the dihedral angle of
the fold given by Eq. (1), leading to self-similar creases and

folds. The generator on the outside of a crease must coin-
cide with the generator on the inside of the next crease,
fixing the angle �þ on the inside of the next crease, while
the torsion determines the relationship between �þ and
��, so that the direction of the next set of generators
emerges. This procedure follows from the first crease to
the last crease, until we reach a boundary or the generators
cross. Our numerical simulations confirm this and further
show that multiple creases stretch very little and do buckle
rigidly.
Our study of curved crease origami shows that a conse-

quence of the fundamental frustration between folding along
a curve and the avoidance of singularities and in-plane
stretching imposes geometric constraints on the shape that
are reflected in a bifurcation of the curvature of a closed
crease of large width. Indeed, the coupling between shape
and in-plane stretching endows these structures with a stiff-
ness and response that is unusual, as we have demonstrated
in the simplest of situations—a closed circular fold. Moving
forward, our approach may be generalized to more complex
curves having variable dihedral angles in folded structures
with curved creases, and thus sets the stage for the analysis
and design of these objects.
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FIG. 3 (color online). (a) Angle differences j�ð�=2Þ � �ð0Þj
as a function of! with �0 ¼ 2�=3. The curve with diamonds are
computed from the first-order perturbation theory with &¼2=

ffiffiffi
3

p
and �0 ¼ 2�=3. The numerical simulations are shown in gray
with & ¼ 2

ffiffiffi
3

p
(open circles) and & ¼ 160=

ffiffiffi
3

p
(open squares),

and are compared with nonperturbative variational ansatz, �ð2Þ
and �ð2Þ, described in the text with & ¼ ffiffiffi

3
p

=40 (circles) and

& ¼ ffiffiffi
3

p
=2 (squares). Corresponding energy landscapes, as a

function of �ð0Þ and �ð�=2Þ, respectively, are shown for
(b) ! ¼ 0:01, (c) 0.05, and (d) 0.1, with energy minima drawn
as white dots.

(a)

(b)

FIG. 4 (color online). (a) A plastic model of six circular folds
generated by perforating the folds at equal intervals with a laser
cutter. The ratio of outer to inner boundary is 2. (b) A simulation
result with the same planar geometry as the plastic model shaded
by local area change. Multiple fold simulation has the same
magnitude order of area change as that of single fold simulation
and agrees visually with the physical model in (a).
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