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We investigate how the orbital angular momentum of a paraxial light beam is affected upon reflection at

a planar interface. Theoretically, the unavoidable angular spread of the beam leads to orbital angular

momentum sidebands, which are found to be already significant for a modest beam spread (0.05). In

analogy to the polarization Fresnel coefficients, we develop an analytical theory based upon spatial

Fresnel coefficients; this allows a straightforward prediction of the strength of the sidebands. We confirm

this by experiment and numerical simulation.
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A light beam, either classical or quantum, possesses
spatially transverse degrees of freedom. A very popular
example is the orbital angular momentum (OAM) of light
[1]; this has important applications in quantum communi-
cation [2]. The key advantage of OAM for quantum com-
munication is its high dimensionality; this allows a single
photon to carry much more [3,4] than the single bit of
information (qubit) enabled by the polarization degree of
freedom. In this Letter, we investigate, theoretically and
experimentally, the effect of optical reflection at a planar
interface on the OAM state of a beam. This is a relevant
issue, since reflection is the simplest possible optical op-
eration, and is often unavoidable in experiments and ap-
plications. An analogous issue is well known for the case of
light’s polarization; this is generally strongly affected by
Fresnel reflection (apart from special cases [5]). What
happens in the OAM case? Everyday experience tells us
that image distortion does not occur if we use a planar
mirror; this suggests that the spatial state of the input beam
(and thus also the OAM spectrum) should be well pre-
served upon reflection.

As we will see, the OAM state is indeed conserved if we
use an ideal mirror, which we define as a (planar) mirror
with infinite dielectric contrast. However, a practical mir-
ror has a finite dielectric contrast; think for instance of a
single dielectric interface, or a multilayer dielectric mirror,
or a metal mirror. In this case, wave optics leads to dif-
fractive corrections upon Snell’s reflection law such as the
Goos-Hänchen (GH) [6] and Imbert-Fedorov (IF) [7,8]
shifts: the reflected beam is shifted relative to the geomet-
rical optics reflected ray [9–13]. Consequently, the spatial
state of light is modified by reflection; we describe this
theoretically by spatial Fresnel coefficients that act upon
the transverse modes of the incident light beam, analogous
to the conventional polarization Fresnel coefficients that
act upon the polarization modes. We find that the
reflection-induced modification of the OAM state depends
on the angular spread of the beam; this leads to OAM

sidebands, even in the paraxial approximation. This is
confirmed by our experimental results.
Our work connects with several papers that report on

OAM spectral broadening due to (unintentional) experi-
mental misalignment of the reference frame with respect to
the OAM beam [4,14,15]. Such broadening can obviously
be removed by proper readjustment of the setup to com-
pensate the reference misalignment. However, in our case
the misalignment is intrinsic to reflection (due to GH and
IF shifts) and (as we will see) depends on the spatial OAM
mode. Therefore, it cannot be cancelled simply by optical
adjustment if we deal with a superposition of spatial modes
as input states. We aim here to quantify the corresponding
OAM spectral broadening. Our work also connects with
that of Okuda and Sasada [16,17] who study giant (non-
perturbative) deformation of an OAM mode due to total
internal reflection for incidence very close to the critical
angle. In such a singular regime, beam shifts (GH and IF),
and thus the OAMmode spectrum, are ill-defined concepts
[17]; we do not consider this singular total internal reflec-
tion case in the present Letter. Finally, there is also a
connection with very recent work on the weak measure-
ment aspects and topology of vortex singularities occurring
in planar reflection [18,19].
Theoretically, we describe the reflection process in

terms of a scattering operator Ŝ ¼ P
�P̂� � M̂�, where

P̂� acts on the polarization state j�i [� ¼ 1 and � ¼ 2
correspond to p (in plane) and s (out of plane) polarization,

respectively] and M̂� on the spatial state jc i. Here, we
have adopted a quantum notation for the sake of clarity. We
restrict ourselves to a paraxial light field; in this case,
polarization and spatial degree of freedom factorize:

jini ¼ j�ijc i. Upon reflection, Ŝ mixes the polarization
and spatial part; thus, after scattering, it is not possible to
write the state as before in a product of polarization times
spatial state [12,20]; this establishes a link between beam
shifts and weak measurements [10,19].
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In more detail, we discuss the incoming field
Eiðxi; yi; zi; tÞ ¼ Re½Aiðxi; yi; ziÞ expð�i!tÞ� in terms
of its analytic signal [21–23] Aiðxi; yi; ziÞ ¼P

�a�ê
0
�c ðxi; yi; ziÞ, where c describes the spatial shape

of the beam (which we keep arbitrary at this point),
ê01 ¼ x̂i and ê02 ¼ ŷi are the incoming-beam unit vectors,
and a1;2 are the polarization coefficients. All coordinates

are expressed in units of k and are consequently dimen-
sionless. The reflected field can be written as

A ðx; y; zÞ ¼ X

�

a�r�ð�Þc ð�xþ X�; y� Y�; zÞê�; (1)

where ê1 ¼ x̂r and ê2 ¼ ŷr are the unit vectors in the
reflected-beam coordinate system (Fig. 1). The reflected
field A depends on the Fresnel reflection coefficients r�
and the four complex beam shifts X� and Y�, whose real
(imaginary) part corresponds to spatial (angular) longitudi-
nal Goos-Hänchen [6] and transverse Imbert-Fedorov
[8,9] shifts, respectively [22]: X� ¼ �i@�½lnr�ð�Þ� and
Y1 ¼ �i a2a1 ð1þ

r2
r1
Þ cot�, Y2 ¼ i a1a2 ð1þ

r1
r2
Þ cot�. By analy-

zing X� and Y�, it can easily be seen that only an infinite
refractive index contrast makes them disappear, so, only at
reflection from such a perfect mirror, the reflected mode
Aðx; y; zÞ is not perturbed. Since the combined shift R� ¼
ðX�; Y�Þ is supposedly small, we can Taylor-expand the
shifted function c to find deviations from geometrical
optics reflection. We obtain for the spatial part with
R ¼ ðx; yÞ

hx; y; zjM̂�jc i ¼ c ð�xþ X�; y� Y�; zÞ
’ c ð�x; y; zÞ þR� � @

@R
c ð�x; y; zÞ: (2)

Now, we specialize to a specific mode basis and expand the
spatial part of the input field in terms of the Laguerre-Gauss
(LG) modes �p

‘ as jc i ¼ P
‘;pj�p

‘ ih�p
‘ jc i. Here, ‘ and p

are the azimuthal and radial mode indices, respectively. Our
goal is to predict the reflected state, from which we can

derive the spatial mode scattering matrix M̂�, which has as
elements the spatial Fresnel coefficients (SFCs)

c�‘;p;‘0;p0 � h�p0
‘0 jM̂�j�p

‘ i: (3)

To obtain these coefficients, we use two properties of LG
modes: (i) �p

‘ ð�x; y; zÞ ¼ ð�1Þ‘�p
�‘ðx; y; zÞ and (ii) the

known spatial derivatives of LG modes,
@�p

‘

@x and
@�p

‘

@y , up

to first order in �0ð¼ �=�!0Þ, the mode half-opening
angle. We find the following first-order coefficients
c�‘;p;‘0;p0 for ‘�<0:

Here, we have combined all occurring shifts, i.e., the
longitudinal and transverse, in each case the spatial

and angular variants, in a single complex number Z�
� ¼

�0
23=2

ð�1Þ‘ðX� � iY�Þ. This is specific to Laguerre-Gauss

modes. Figure 2 shows exemplarily the SFC intensities
Cp
‘;‘0 ¼ jcp

‘;‘0 j2 for air-glass reflection (� ¼ 70�) of a

p-polarized LG mode with �0 ¼ 0:05, assuming for now
a purely azimuthal LG mode (p ¼ 0). We find that reflec-
tion described by the SFCs induces a transformation of a
pure f‘g mode into a superposition of f�‘� 1;�‘;
�‘þ 1g modes, where the minus sign stems simply from
OAM reversal upon reflection. The coupling strength to the
OAM sideband modes f�‘� 1;�‘þ 1g is proportional to
�20 and depends linearly on ‘. In our case of pure azimuthal

modes, the coupling strength C�
‘;‘0 is simply proportional to

ð�0
ffiffiffiffiffiffij‘jp Þ2; here, we recognize the effective mode opening

angle which is proportional to �0
ffiffiffiffiffiffij‘jp

. We also see that the
mode coupling is governed by intrinsic displacement in-
duced by beam shifts X� and Y�. In the particular case of
external reflection at a dielectric, only angular beam shifts
occur [9,11]; this can be seen by analyzing X� and Y�: for
linear s or p polarization, Y� vanishes, and X� is purely
imaginary—this corresponds to an angular shift within the
plane of incidence.

FIG. 1 (color online). Experimental setup: Light from a single
mode fiber pigtailed laser is collimated (M1), polarized (P1),
and then modulated using a phase-only spatial light modulator
(SLM1) to prepare a certain mode. This light is then reflected at
the hypotenuse of a glass prism, and the reflected light is
analyzed using a combination of SLM2 and a single mode fiber
connected to a photodiode (PD). Microscopy objectives M3 and
M4 (10	 , numerical aperture 0.25) can be introduced to change
the beam focussing (�0), and �=2 wave plates WP1 and WP2 are
used to modulate the polarization. The setup is symmetric
relative to the prism, with distances M1–SLM1 ¼ 55 cm and
SLM1–SLM2 ¼ 148 cm.
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The discussion above was for the case of a single OAM
input state; however, it is straightforward to extend this to
an OAM superposition input state. The mode coupling by
reflection is a coherent scattering process so that a super-
position can be handled by decomposition into its constitu-
ent OAM modes.

As a demonstration experiment, we investigate the case
displayed in Fig. 2, i.e., external reflection at an air-glass
interface. As shown in Fig. 1, light from a single mode fiber
pigtailed 635 nm laser is collimated using a 20	 micros-
copy objective M1 (beam waist !0 ¼ 900 �m; this cor-
responds to �0 ¼ 0:0002). The light is sent to a spatial light
modulator SLM1 (10 �m pixel size, 3 mrad blaze angle),
which imprints the desired azimuthal phase to produce
the input OAM spectrum f‘g. This beam is then focused,
externally reflected at the hypotenuse plane of a standard
BK7 (n ¼ 1:52) glass prism, and then recollimated to a
beam waist of !0 ¼ 900 �m. For this telescope configu-
ration, we use underfilled 10	 microscopy objectives (to
minimize aberrations) M3 and M4 (numerical aperture
0.25) to obtain �0 ¼ 0:05 inside the telescope, which is
well within the paraxial approximation. The reflected beam
jouti is sent to SLM2 set to detect OAM index ‘0 in
combination with microscopy objective M4 and a single
mode fiber. The reflected-beam axis is adjusted to be the
axis of the reflected s-polarized fundamental Gaussian
beam. The output fiber is connected to a photodiode
(PD); its photocurrent is proportional to C�

‘;‘0 . By scanning

the OAM of the input (‘) and output (‘0) modes, we map
the matrix containing the spatial Fresnel coefficients.

As a side step, we note that we use standard phase-only
fork holograms on the SLMs to imprint the desired azimu-
thal OAM phase ei‘� onto the field (blaze angle 3 mrad).

This transforms (for instance) a fundamental Gaussian
mode not into a pure LG mode but into a superposition
of LG modes, which have the same azimuthal index ‘ but
different radial index p [24]. In principle, this presents a
problem since the radial modes suffer different transmis-
sion losses through the optical train. Therefore, we verify
our experimental results by comparing with a fit-parame-
ter-free numerical simulation [25], which not only ac-
counts for spatial filtering but also for diffractive effects.
We find that mode-dependent losses in the setup effectively
lessen the influence of higher-order radial modes. As a
bonus, this numerical method also enables validation of
our analytical theory, as shown for the case p ¼ 0 [26].
Continuing now on the main line, we deduce from the

measured C�
‘;‘0 the relative intensity in the OAM side-

bands compared to the total reflected intensity I�relð‘Þ ¼
ðC�

‘;�‘�1 þ C�
‘;�‘þ1Þ=

P
‘0C

�
‘;‘0 . In order to improve the

signal-to-noise ratio, we use polarization modulation (s
versus p) by rotating half-wave plates (WP1 and WP2)
before and after reflection from the interface; this enables
polarization-differential measurement. The experiment
thus yields the polarization differential Ipdð‘Þ ¼ Iprelð‘Þ �
Isrelð‘Þ, which is plotted in Fig. 3 versus the input ‘,
at a fixed angle of incidence (�0 ¼ 70�). The data for
�0 ¼ 0:0002 have been obtained without the telescope. In
this case, our theory predicts polarization-differential side-
bands <10�5 in the experimentally addressed ‘ range,
which is much smaller than (but consistent with) the
experimental accuracy. For �0 ¼ 0:05, the mode coupling
is increased, in good agreement with theory. From
experiments, as well as from numerical simulation, we

FIG. 2 (color online). Calculated SFC intensity Cp
‘;‘0 ¼ jcp

‘;‘0 j2
for the case of p-polarized Laguerre-Gauss modes externally
reflected at a dielectric interface ((n ¼ 1:52, � ¼ 70�, �0 ¼
0:05). Input (‘) and output (‘0) OAM is shown on the horizontal
and vertical axes, respectively (radial mode index p ¼ 0).
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FIG. 3 (color online). Experimental (solid circles) and numeri-
cal (open circles) polarization-differential SFC sideband inten-
sity Ipdð‘Þ. For an input beam with ‘ (horizontal axis), it shows

the sum of the two OAM sidebands (with �‘� 1 and �‘þ 1)
appearing after external reflection by an air-glass interface, at an
angle of incidence � ¼ 70�, for two values of the beam spread
�0. Error bars are estimated from multiple measurement runs to
take mechanical drifts and misalignment into account.
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observe that mode coupling to�‘� 2 modes is at least an
order of magnitude smaller than the coupling to�‘� 1.

In Fig. 4(a), we present calculations of the SFC side-
bands for the full range of angles of incidence. We use a
pure LG mode with ‘ ¼ 4 and p ¼ 0 as input beam and
display the data for s and p polarization separately, as well
as for the polarization-differential case. For p polarization,
a Brewster resonance occurs due to the vanishing of the
reflection, making its contribution to the sidebands in most
cases much larger than that of s polarization; i.e., the
polarization differential Ipdð‘Þ is a sensible measure. For

�0 ¼ 0:0002, the ‘‘neighboring’’ ‘ ¼ 3 and ‘ ¼ 5 side-
bands are (much) weaker than 0.01, except in a very narrow
(0:5�) angular window centered at the Brewster angle.

It is interesting to compare our results for an air-glass
interface with other cases, such as an air-metal interface.
Our theory is fully adequate for this since the material
properties enter only via the refractive index (or dielectric
constant) that is complex-valued for a metal. Figure 4(b)
gives the SFC sidebands Ipdð‘ ¼ 4Þ for a silver interface

(nAg ¼ 0:14þ 4i at � ¼ 635 nm). In the collimated case,

the sideband intensity is now much smaller (< 10�5 at all
angles of incidence) than for an air-glass interface, basi-
cally since a metal is a much better reflector. Also, the
Brewster resonance is absent in this case. We expect simi-
lar results for a dielectric Bragg mirror. It will be interest-
ing to check these predictions experimentally.

In conclusion, we have introduced the concept of spatial
Fresnel coefficients (SFCs) to describe transverse-mode-
dependent reflection of a light beam. In the OAM basis,

we find that an OAM mode f‘g acquires sidebands. The
sidebands are due to first-order diffractive corrections to
geometric optics (GH and IF effects); these lead to mode-
dependent displacement and thus to coupling to ‘‘neigh-
boring’’ OAM modes. We find that these effects scale with
the angular spread of the beam. The sidebands disappear
only in the limit of a completely reflecting mirror with an
infinite refractive index step. Such mirrors do not exist, so
in practice sidebands do occur. Nevertheless, for a well-
collimated beam, the sidebands are small; this bodes well
for the use of folding mirrors or beam splitters in optical
setups in the laboratory and for mirror-assisted free-space
OAM communication. However, already for a moderately
focused beam (�0 ¼ 0:05) the sidebands become measur-
able (relative intensity of a few %) and have to be ac-
counted for in any experiment involving partial reflection
of OAM beams.
An intriguing question is, can we undo the SFC-induced

mode coupling? The reflective scattering process described
by the matrix c�‘;‘0 is reversible, so that in principle super-

position input states can be recovered with unity fidelity.
But how can this be achieved experimentally? An ordinary
mirror cannot do this since it simply adds to the diffractive
beam shifts (GH and IF). We thus need an optical device
that cancels intrinsic beam shifts; possibly, a negative-
index metamaterial [27] or photonic crystal [28] could
achieve this task.
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port by NWO and the EU STREP program 255914
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