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In thermal equilibrium the ground state of the plasma of Standard Model particles is determined by

temperature and exactly conserved combinations of baryon and lepton numbers. We show that at nonzero

values of the global charges a translation invariant and homogeneous state of the plasma becomes unstable

and the system transits into a new equilibrium state, containing a large-scale magnetic field. The origin of

this effect is the parity-breaking character of weak interactions and chiral anomaly. This situation could

occur in the early Universe and may play an important role in its subsequent evolution.
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It is generally believed that the ground state of the
Standard Model at high temperatures is homogeneous
and isotropic. This assumption is important, for example,
in the early Universe, where it underlies the description of
all of the important processes: baryogenesis, cosmological
phase transitions, primordial nucleosynthesis, etc. [1]. In
this Letter we demonstrate, however, that at a finite density
of lepton or baryon numbers due to the parity-violating
nature of the weak interactions this homogeneous ‘‘ground
state’’ becomes unstable by developing a long-range mag-
netic field. The transition to the ‘‘true’’ ground state may
depend on the details of the nonequilibrium dynamics,
when various violent dissipative processes (e.g., turbu-
lence, radiation emission, and the finite conductivity of
the plasma) play an important role.

What are the conditions for the translational invariance
to be spontaneously broken by a long-range field? It is
sufficient for the free energy of the gauge fields to contain
an interaction term that dominates the kinetic energy and
can be both positive and negative. An example is provided
by a Chern-Simons (CS) term Ics / A@A, which has less
derivatives than the kinetic term ð@AÞ2 and therefore can
dominate it at large scales. The presence of the CS term
in the Maxwell equations is known to lead to an insta-
bility and to the generation of magnetic fields (see, e.g.,
Refs. [2–5]).

At zero temperature and densities the CS term for elec-
tromagnetic fields is prohibited as a consequence of gauge
invariance and Lorentz symmetry (Furry theorem [6]). At
finite temperatures and densities the plasma creates a pre-
ferred reference frame and the four-dimensional Lorentz
invariance is broken down to a three-dimensional one. As a
result the free energy of static gauge fields is

F ½A� ¼
Z

d3pAið ~pÞ�ijðpÞAjð� ~pÞ þOðA3Þ (1)

with the polarization operator

�ijð ~pÞ ¼ ðp2�ij � pipjÞ�1ðp2Þ þ i�ijkp
k�2ðp2Þ; (2)

where i, j, k ¼ 1, 2, 3 are spacial indices; p2 ¼ j ~pj2; and
�ijk is the antisymmetric tensor. Equation (2) is the most

general form of �ij satisfying the gauge-invariance trans-

versality condition pi�ij ¼ 0. In the limit p2 ! 0 a non-

zero �2ð0Þ means that the CS term �2ð0Þ ~A � ~r� ~A
appears in Eq. (1). The 3� 3 matrix of Eq. (2) has then
a negative eigenvalue for sufficiently small momenta
p < j�2ðp2Þ=�1ðp2Þj and the corresponding eigenmode
grows larger and larger (until the terms higher order in A
stabilize it) [7].
We demonstrate below that in a theory like the Standard

Model where fermions are involved in parity-violating
weak interactions, the nonzero equilibrium �2ð0Þ term is
generated. We analyze the simplest situation when this
effect is present: the case of T � mW (mass of the
W-boson) when weak interactions can be described by
the Fermi theory

LF ¼ 4GFffiffiffi
2

p ½ðJNC� Þ2 þ 2ðJcc� Þ2�: (3)

The full Hamiltonian of the theory H ¼ H 0 þH F þ
H EM has a free part for fermions and photons, H 0, and
terms describing electromagnetic (H EM) and Fermi (H F)
interactions.
Modified dispersion relation of fermions at finite

density of baryon or lepton number.—The equilibrium
plasma at T � mW is described by the density matrix,
%̂ ¼ Z�1 exp½��ðH �P

���L� � �QQ� �BBÞ�. Five

global charges commute with the Hamiltonian H : the
baryon (B) and flavor lepton numbers L� (the index �
runs over the flavors) [10] and Q (��, �Q, �B are the

corresponding Lagrange multipliers). Z ensures that
trð%̂Þ ¼ 1.
To find the distribution functions of the left- and

right-chiral particles we compute the correlators
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h �cPL;Rc i ¼ trð%̂ �c PL;Rc Þ (where PL;R ¼ 1
2 ð1� �5Þ are

chiral projectors). We expand the density matrix in the
interactions to get

%̂ � %̂0ð1� �H F � �H EM � �2

2
H EMH F þ . . .Þ: (4)

At zeroth order in the interactions one gets h �cPLc i0 ¼
h �cPRc i0 ¼ 1

2 h �c c i0. Taking into account the chiral Fermi

interactions, %̂F � %̂0ð1� �H FÞ, one finds that
h �cPLc iF � h �cPRc iF. The Green’s function is found
via G�1 ¼ G�1

0 �� where, for example, the self-energy

of the left electron, �L, is (see Fig. 1)

�L ¼ 4GFffiffiffi
2

p
h
2geLðgeL��PLhe �ei0��PL

þX
c

gc
L;R�

�PLh �c��PL;Rc i0Þ

þ 1

2
��PLh�e ��ei0��PL

i
� ��L�0PL: (5)

A similar expression for �R defines ��R. Equation (5)
does not depend on momentum. The thermal averages
hc �c i0 and h �c��PL;Rc i0 are proportional to the

particle-antiparticle asymmetry (see, e.g., Ref. [11]); the
thermal averages are also summarized in Table 1,
Appendix B, of that work). As a result, e.g., the electron
propagator becomes

G ¼ 1

�0ð��LPL þ ��RPR þ�treeÞ þ 6pþme

; (6)

i.e., the dispersion relation of electrons changes when
taking into account the Fermi corrections (cf.,
Refs. [11,12]). Indeed, from ð6p�m� �Þc ¼ 0 we see
that the ‘‘on-shell conditions’’ ð!��treeÞ2 ¼ p2 þm2 get
shifted for left (right) particles by 2ð!��treeÞ��L;R

(in the limit ��L;R � !), where �tree ¼ ð�Q � �eÞ.
Moreover, as me=T ! 0 the propagator of Eq. (6) can be
written as the sum of the free propagators of the left and
right fermions, with�tree shifted by the different quantities
��L or ��R, correspondingly.
This difference gives rise to a parity-odd term in

the polarization operator of the photons. Indeed the
polarization operator that was parity-even when computed
with respect to the density matrix %̂0 [Fig. 2(a)]
acquires a parity-odd part when averaged with respect
to the %̂F. The lowest order weak corrections are repre-
sented by two figures, Figs. 2(c) and 2(b). The
computation of Fig. 2(b) gives a nonzero �2ð0Þ ¼
�
2	

P
fq

2
fð��fL � ��fRÞ

�2ð0Þ ¼ �

2	

4GFffiffiffi
2

p ½cL�
L� þ cBB� � �

2	
��; (7)

where the coefficients cL�
; cB 	Oð1Þ depend on the fermi-

onic content of the plasma (see Appendix B of Supplemental

Material [14]) and� ¼ e2

4	 is the fine-structure constant [15].

Notice that, even if the anomalous charge Bþ L ¼ 0, the
�2ð0Þ term [Eq. (7)] remains nonzero.
Figure 2(c) does not contribute to the �2ð0Þ term as it

can be cut into two Fig. 2(a) diagrams along the vertical
dotted line, each of which is at least first order in momen-
tum [Eq. (2)] [17].
Although the Fermi theory [Eq. (3)] is not renormaliz-

able, the result of Eq. (7) is given by the nondivergent part
of Fig. 1 and is expressed in terms of well-defined physical
quantities (cf., Ref. [11]).
The origin of the �2 term has its roots in the axial

anomaly (cf., Refs. [4,5,18–23]). Indeed, assume � �
�tree; T and consider a correction linear in ��=T to the
polarization operator. Figure 2(b) then becomes Fig. 2(d)—
the famous triangular graph for the axial anomaly
[24–26], which gives in the effective action the CS term /
�����X�A�@�A� with the ‘‘axial vector field’’ X�. This

term reduces to the parity-odd term in the free energy
[Eqs. (1) and (2)] given by Fig. 2(b) if one uses X� ¼
����0 with ��, defined by Eq. (7).
Axial anomaly means that one can convert left fermions

into right ones by exciting the gauge field configurations
with a nontrivial CS number Ncs �

R
d3xA � B (where

B ¼ r� A is a magnetic field):

FIG. 1. Fermi corrections to the fermion self-energy. The loop
contribution is nonzero only at finite lepton=baryon density.

FIG. 2. Polarization operator (a), its one-loop weak corrections [(b) and (c)] and its expansion in ��=T (d).
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dðnL � nRÞ
dt

¼ e2

2	2

Z
d3xE � B ¼ �

	

dNcs

dt
(8)

(here E ¼ � _A is an electric field). Consider the simplest
example of zero temperature and zero mass. The left and
right fermion numbers are then (classically) conserved. An
infinitesimal change of the gauge field �A destroys (cre-
ates) �nL;R ¼ � �

2	 �Ncs real fermions around the Fermi

level. If the left and right Fermi energies are different
(�L � �R) the total energy of the system changes by
�F ¼ ð�L ��RÞ �

2	 �Ncs [19,27], which leads to the

parity-odd CS term in the free energy:F ½A� ¼ �ð�L��RÞ
2	 �R

d3xA � B. This remains true also for T � 0 [18,20].

In our case the fermions are massive and the fermion
chiralities are not conserved separately. However, the dif-
ferent dispersion relations (and hence, energies) of the
left and right particles play a similar role and make the
change of chirality and creation of Ncs � 0 energetically
favorable.

Chern-Simons coefficient at two loops and ‘‘nonrenorm-
alization theorems.’’—Figure 2(d) is similar to the triangu-
lar diagram responsible, e.g., for 	0 ! 2� decay (with
�� �c�0�5c playing the role of the only nonzero compo-
nent of the chiral current, describing the pion) [24–26]. It is
well known that the axial anomaly should be calculated at
one loop only and that it is not renormalized by higher-loop
corrections [28–31], also at finite temperature and density.
At the same time our result becomes nonzero only at two
loops. There is, however, no contradiction. What is non-
renormalized for the chiral anomaly is the numerical co-
efficient in front of the proper combination of external
fields, [e.g., �

2	 in Eq. (8)]. In our case this coefficient is

also not renormalized. The structure of the parity-odd one
loop term has the same form at tree level and at one loop in
GF:�2ð0Þ ¼ �

2	 ð��tree þ ��Þ. The numerical coefficient

is dictated by the axial anomaly; ��tree is a possible
difference of chemical potentials present at tree level
(zero in our case); and �� is the shift generated by the
diagrams of Fig. 2(b) [Eq. (7)].

Also a four-dimensional theory at finite temperatures
can be regarded as a three-dimensional Eucledian model
albeit with the infinite number of particles—each
Matsubara mode of a fermion becomes a ‘‘particle’’ with
mass!n ¼ 	ð2nþ 1ÞT, n 2 Z. Therefore, (as was argued
in Ref. [32]) our result may seem to be in contradiction
with the ‘‘Coleman and Hill theorem’’ [33] that states that
in any Eucledian three-dimensional gauge theory without

massless particles �2ð0Þ ¼
P

f

q2
f

4	

mf

jmfj and is exact at one

loop. However, the presence of the infinite number of
modes changes the situation, as can be seen already in
the simplest chiral gauge theory, if one computes the�2ð0Þ
term in the Matsubara formalism [see, e.g., Ref. [20]].
Formally, considering the left- and right-chiral particles
as fermions with ‘‘complex mass’’ mn � ð!n � i�L;RÞ,
and applying this directly to the results of Ref. [33] one

would arrive at the undefined expression �2ð0Þ ¼
e2

4	

P
n2Z

!n�i�Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!n�i�LÞ2

p � !n�i�Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!n�i�RÞ2

p . The reason for this is

clear: the degree of divergence of the diagrams is different
in three and four dimensions (hence the infinite sum over
n). In particular, if we first sum over the Matsubara fre-
quencies and then integrate over momentum (or if one uses
dimensional regularization in the three-momentum integral
and then takes the limit d ! 3, [20]; see also Ref. [22]) one
obtains a well-defined answer, Eq. (7).
Moreover, the CH theorem uses the fact that the three-

point photon vertex �ð3Þðp1 . . .Þ ¼ Oðp1Þ. This is not true
in our case, as Fig. 2(d) becomes linearly divergent in four
dimensions and therefore the shift of the integration mo-
mentum by any fixed vector k changes its parity-odd part
by a finite amount / ���ijnAjknAj [34,35].

Ground state.—The presence of the �2ð0Þ � 0 term
leads to the generation of magnetic fields. The CS number
Ncs	 kA2 will increase until it reaches �

	Ncs	ðnL�nRÞ
	GFLtot (see, e.g., Ref. [19]). At fixed Ncs the magnetic
field tends to increase its wavelength to decrease the total
energy (B2 	 kNcs). As a result, the system does not have a
thermodynamic (infinite volume) limit (cf., Ref. [19]); the
value of the field and the scale of the inhomogeneity will be
determined by the size of the system. It is clear, however,
that in realistic systems establishing the long-range field is
a complicated process (see, e.g., Ref. [36]), greatly affected
by the dissipative processes and by the existence of the
different relaxation channels of Ncs (resistivity of the
plasma, energy radiation, turbulence, etc.; see, e.g.,
Refs. [37–41]). This may significantly affect the subse-
quent evolution.
Discussion.—We have demonstrated that the Standard

Model plasma at finite densities of lepton and baryon
numbers becomes unstable and tends to develop large scale
magnetic fields. We considered electrodynamics plus the
Fermi theory [Eq. (3)], a description of weak interactions

that is valid when e�mW=T & ðT=mWÞ2, i.e., at T &
40 GeV. At higher temperatures one should consider the
full electroweak theory and perform two-loop computa-
tions of �2ð0Þ. At even higher temperatures (in the sym-
metric phase) one should analyze the hypermagnetic fields.
We leave these analyses for future work. We expect how-
ever that our conclusion about the instability of a homoge-
neous state will hold.
Below we discuss several realistic systems in which the

effects discussed here can become important. First we
consider the primordial plasma at the radiation dominated
epoch. Equation (7) gives �2ð0Þ 	 c� �ðGFT

3Þ
L;B

where 
L;B < 1 is the ratio of the total lepton (baryon)

number to the number of photons; the numerical coeffi-
cient c � 2:5� 10�2.
The instability starts to develop at scales of k	�2ð0Þ

and the magnetic field initially grows as e� where
�ðtÞ � k2t=� (see, e.g., Refs. [3,23,36]). The equilibrium
considerations of this work apply if the instability develops
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over less than a Hubble time (i.e., while the temperature
does not change significantly). This means that �ðt ¼
H�1Þ � 2:0ð T

mW
Þ3ð
L;B

10�2Þ2 should exceed 1 [42] (T &

40 GeV is required for the applicability of the Fermi
theory). These conditions can be realized for 
L *
a few� 10�2. Although this value is much greater than
the measured baryon asymmetry 
B 	 6:0� 10�10 [46], it
does not contradict any observations. Indeed, the upper
bounds on 
L exist only at the epoch of primordial nu-
cleosynthesis (j
Lj & a few� 10�2 [47]). At earlier
epochs even 
L	1 is possible (if this lepton asymmetry
disappears later). Such a scenario is realized, e.g., in the
�MSM (see Ref. [48] for a review), where the lepton
asymmetry continues being generated below the sphaleron
freeze-out temperature and may reach 
L 	 10�2–10�1

before it disappears at T	 a few GeV [49]. We see that
significant magnetic fields can in principle develop in this
case, playing an important role for analysis of the cosmo-
logical implications of the �MSM.

We stress that the above condition is sufficient (rather
than necessary) for magnetic fields to develop. In principle,
one should consider the time-dependent dynamics of the
�2ð0Þ term and � / ðR dt�2ð0ÞÞ2. Some part of this dy-

namics can occur above 40 GeV where the electroweak
(rather than the Fermi) interactions should be analyzed. We
leave this analysis for future work.

Next, we consider a high density degenerate electron
plasma (appearing, e.g., in white dwarfs and neutron stars
[50]). Notice that our consideration remains valid in this
regime as Eq. (5) makes no assumption about the relation
between the mass and temperature of the particles. Only
the numerical coefficient in Eq. (7) changes, and we
checked that it is Oð1Þ. The same relation �2ð0Þ 	
�
4	GFLtot holds; however, now Ltot ¼ ne (the density of

electrons) and it can be quite essential, reaching
1030–1035 cm�3 in the crust of neutron stars [51]. The
corresponding scale of the instability k	�2ð0Þ is then
of (sub)kilometer size and the time of its development is
much shorter than the lifetime of the star.

Below, we compare our results to the previous work. In
any vectorlike Abelian gauge theory if the numbers of left
and right particles (corresponding chemical potentials) are
different, the CS term will be generated [2,18,20] (also
Refs. [3–5]). In this case (extensively discussed in the
literature) the contribution of left and right charged fermi-
ons to Fig. 2(a) is different and the term �2ð0Þ ¼ �

2	 �
ð�L ��RÞ appears. However, as all charged particles in
the StandardModel are massive such quantum numbers are
only approximately conserved and chirality flipping reac-
tions [although suppressed as ðmass=EÞ2] eventually drive
�� ! 0. Therefore one can only speak of nonequilibrium
processes when �� � 0 is present as an initial condition
and then relaxes. For example, in the expanding Universe,
the time scale for relaxation is set by the Hubble parameter
HðtÞ. If the chirality-flipping reaction rate is faster than
HðtÞ, �� is expected to have its equilibrium value of

�� ¼ 0. Despite the smallness of the electron’s mass
(Yukawa coupling) this happens already at temperatures
T & 80 TeV [52] [although ðme=80 TeVÞ2 	 10�17]. If
the initial conditions had a nonzero �eR above 80 TeV, a

generation of magnetic fields will occur [3]. However, the
horizon size at this epoch is small compared to the scales of
the plasma dissipative processes [37,38,40] and the mag-
netic fields have strongly subhorizon characteristic scales;
therefore, they are probably erased during the subsequent
evolution [3,53,54].
Contrary to these works we consider an equilibrium state

(in particular, where all chirality-flipping reactions are in
thermal equilibrium). It is a modification of the dispersion
relations due to the Fermi interaction (Fig. 1) that leads
to the nonzero coefficient �2ð0Þ [Eq. (7)] in equilibrium.
This effect therefore may take place at much lower
temperatures.
After the magnetic fields are generated via the discussed

mechanism, their evolution is also strongly affected by the
chiral anomaly. As shown in Ref. [36], the self-consistent
evolution of a helical magnetic field and of chiral asym-
metry, induced by this field due to the chiral anomaly, is
very different from conventional MHD, and significantly
increases the lifetime of both quantities. It is interesting to
combine the results of our work with the description of
further evolution, developed in Ref. [36].
The Standard Model at the nonzero density of the

anomalous charge Bþ L was considered, e.g., in
Refs. [55–57]. It was shown there that a similar CS term
exists for nonAbelian gauge fields and that a homogeneous
state becomes classically unstable at large values of the
chemical potential, exceeding the mass of weak bosons.
Even in the symmetric phase the ‘‘magnetic screening’’ [8]
requires �� * T to overcome the ‘‘magnetic mass’’
mmagn 	 �WT. The anomalous nonconservation of the

Bþ L current drives the coefficient of the corresponding
CS term to zero [58] and the standing wavelike configura-
tions of the gauge fields are actually metastable (see
Ref. [56]). It is important to note that in our case an
instability appears even if Bþ L ¼ 0.
Summary.—We have discussed a previously unknown

effect that occurs in the Standard Model at finite tempera-
ture and density. It implies that a number of processes in
the early Universe can be affected, including cosmological
phase transitions, baryogenesis, and dark matter produc-
tion. This effect may in particular lead to the generation of
horizon-scale helical cosmic magnetic fields purely within
the Standard Model. Such fields may survive until the
present and may serve as seeds for the observed magnetic
fields in galaxies and clusters. The effect may also be
important for the explanation of the physics of compact
stars.
We acknowledge very helpful conversations with J.
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