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The density of states is calculated for the SU(2), SU(3), and a compact U(1) lattice gauge theories using

a modified version of the Wang-Landau algorithm. We find that the density of states of the SU(2) gauge

theory can be reliably calculated over a range of 120 000 orders of magnitude for lattice sizes as big as

204. We demonstrate the potential of the algorithm by reproducing the SU(2) average action, its specific

heat, and the critical couplings of the weak first order transition in U(1).
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Monte Carlo simulations of theories discretized on a
Euclidean space-time lattice currently provide the most
successful approach to calculations from first principles
in asymptotically free gauge theories in the energy domain
in which the coupling is of order one. This strategy is
successful for computations of observables that can be
expressed as a vacuum expectation value (VEV) on a
theory with a semipositive definite path integral measure.
However, when the observable is not a VEV (e.g., the free
energy, which is related to the logarithm of a partition
function) or the path integral measure is not semipositive
(like in QCD at finite density), Monte Carlo algorithms are
either unsuitable or very inefficient.

An alternative numerical approach to lattice gauge theo-
ries potentially free from those limitations is based on the
density of states. Let us consider a quantum field theory
with action �S½��, with � the inverse coupling. For
this theory, the path integral in Euclidean space-time is
given by

Z ¼
Z

D�ðxÞe�S½��; (1)

where ½D�ðxÞ� means that the integration has to be per-
formed over all the allowed configurations of the field �.
Defining the density of states �ðEÞ as

�ðEÞ ¼
Z

D�ðxÞ�ðS½�� � EÞ; (2)

the VEVof an observable OðEÞ becomes

hOi¼ 1

Z

Z
�ðEÞOðEÞe�EdE; Z¼

Z
�ðEÞe�EdE: (3)

If the density of states is known, hOi can be obtained by
means of standard integration.

The density of states has been previously explored for a
U(1) and SU(2) gauge theory using respectively multi-
canonical [1] and canonical [2] methods. For systems
with discrete energy levels, an efficient algorithm for com-
puting �ðEÞ has been proposed by Wang and Landau
in Ref. [3]. To date, the method has found various

applications in statistical mechanics, some of which have
produced remarkable results that can not be obtained with a
direct Monte Carlo approach (see, e.g., Ref. [4] for a recent
example). Despite its popularity in statistical mechanics,
the Wang-Landau algorithm has found only limited appli-
cations in lattice gauge theory [5–7] (An earlier attempt to
measure the density of states is reported in [8].). In fact, an
efficient algorithm for sampling the density of states of
continuous systems along the lines of Ref. [3] is not
available to date. In this Letter, we propose a new method
for determining a continuous density of states and we apply
it to calculate the density of states in SU(2) and U(1) on the
lattice.
Throughout this Letter we adopt the lattice regulariza-

tion, which leaves us with a N4 cubic lattice as the discre-
tization of the Euclidean space-time. The dynamical
degrees of freedom of the SUðNcÞ gauge theory are repre-
sented by the matrices U�ðxÞ 2 SUðNcÞ, which are

associated with the links of the lattice. We are using the
so-called Wilson action, i.e.,

S½U� ¼ X
�>�;x

1

Nc

Re tr½U�ðxÞU�ðxþ�ÞUy
�ðxþ �ÞUy

� ðxÞ�;

(4)

stressing however that our approach is not limited to this
particular action, but can handle, e.g., improved actions
equally well.
In order to present our novel type of numerical algorithm

to calculate the density of states, we will assume that
ln�ðEÞ is well approximated by piecewise linear functions.
It will indeed turn out below that ln�ðEÞ is a remarkable
smooth function of E.
Let us consider the energy interval [E0, E0 þ �E] for

which we approximately write

�ðEÞ ¼ �ðE0Þ expfaðE0ÞðE� E0Þg (5)

for E0 � E< E0 þ �E. Our goal will be to calculate the
coefficients aðE0Þ, which can be considered as derivatives
of the density of states:
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aðE0Þ ¼ d ln�ðEÞ
dE

��������E¼E0

: (6)

The strategy to obtain these coefficients is based upon the
truncated and reweighted expectation values defined by

hhfðEÞiiðaÞ ¼ 1

N

Z
dEfðEÞ�ðEÞ�½E0;�E�e

�aE; (7)

N ¼
Z

dE�ðEÞ�½E0;�E�e
�aE; (8)

�½E0;�E� ¼
8<
:
1 for E0 � E< E0 þ �E:

0 elsewhere:
(9)

If the energy interval is small enough, i.e., if (5) is a good
approximation, we should be able to choose a to compen-
sate aðE0Þ. This would leave us with a flat energy histo-
gram and with

hhEiiðaÞ ¼ E0 þ �E

2
; for a ¼ aðE0Þ: (10)

Assume now that an is an approximation for aðE0Þ such
that x ¼ ½aðE0Þ � an��E � 1. Defining�E :¼ E� E0 �
�E=2, we then find using (5)

hh�EiiðanÞ ¼ �E2

12
½aðE0Þ � an� þOðx3�EÞ: (11)

Ignoring the higher order correction and solving for aðE0Þ,
we obtain a better approximation anþ1:

anþ1 ¼ an þ 12

�E2
hh�EiiðanÞ: (12)

The central idea is to iterate the latter equation until

hh�Eiiða1Þ ¼ 0 ) a1 ¼ aðE0Þ;
where we have used (10). We point out that the truncated
expectation values can be easily estimated by means of
Monte Carlo methods. To this aim, we insert (2) into (7) to
obtain:

hhfðEÞiiðaÞ ¼ 1

N

Z
½E0;�E�

DU�fðS½U�Þe�aS½U�; (13)

N ¼
Z
½E0;�E�

DU�e
�aS½U�: (14)

The subscript of the integral indicates that updates
of configurations, the action of which falls outside the
desired energy interval, are discarded. There are many
Monte Carlo techniques to estimate the truncated expecta-
tion value in (13), the Metropolis algorithm and the Heat-
Bath approach being the two most obvious choices. We
have tested both techniques and found that our method
for estimating aðE0Þ is robust. The numerical results shown
below have been obtained by an adapted Heat-Bath

algorithm with a 100% acceptance rate (details of the
algorithm will be published elsewhere).
Let us now consider the SU(2) gauge theory to illustrate

our approach in practice. If N4 is the number of lattice
points, the maximal action is given by Emax ¼ 6N4. We
here consider the energy interval I :¼ ½E0; E0 þ �E� ¼
½0:650; 0:651�6N4. The first task is to generate a lattice
configuration fU�g the action of which falls into the

energy interval I. For this purpose, we start with a
‘‘cold’’ configuration U�ðxÞ ¼ 1, and update the configu-

ration forcing it to reach the desired energy interval. We
then pick a start value for the iteration (12), which has been
a0 ¼ �2 in this preliminary study. We perform 25 energy
restricted Monte Carlo sweeps at a0 [see (13)], where each
sweep consists of N4 updates of randomly chosen individ-
ual links.
In order to evaluate the next ai, the expectation value

hh�Eii is evaluated using the energy restricted
Monte Carlo method [see (13)]. For this, we have used
384 measurements divided in 48 independent runs each
contributing 8 Monte Carlo sweeps. The corresponding
estimator is then used to obtain an improved value a1.
This procedure is reiterated n times, n > 1, until the value
of a starts to fluctuate around a central value. The thermal-
ization history is shown in Fig. 1: for small lattice sizes
such as 104, a thermalized state is reached after 10 iter-
ations while for our biggest lattice 204 roughly 80 itera-
tions are necessary to reach an equilibrium. To keep
control of the autocorrelation in the determination of the
solution of the iterative procedure we have evaluated the
integrated autocorrelation time (�int) of hh�Eii. In particu-
lar the measure of �int for the highest energy gap yields a
value always smaller than two steps for each of our
volumes.

FIG. 1 (color online). The thermalization history for a SU(2)
gauge theory for lattice sizes 104 . . . 204.
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Having control of the autocorrelation time allows us to
reliably define a statistical error of hh�Eii which directly
feeds into the uncertainty for anþ1 [see (12)]. Rather than
spending all numerical resources to obtain a high precision
estimate for hh�Eii we found it advantageous to feed the
more noisy estimator into the iteration (12) and to average
the an values of the resulting sequence. The standard error
of an for an average over a bin of 10 iterations after
thermalization is shown in Fig. 2. We roughly find that

the error decreases like 1=
ffiffiffiffi
V

p
where V is the lattice vol-

ume. The lack of autocorrelation reflects in the good scal-
ing of the error with the volume showing the efficiency of
the algorithm also for large volumes. In particular, this

observation is true even when studying energy intervals
for which we would normally expect strong effects in
autocorrelation due to critical slowing down [for example
for 0:850 � E=Emax � 0:851 and V ¼ 204 we find �int ¼
1:8ð1Þ].
For the determination of aðE0Þ, 187 iterations have been

performed for thermalization and 312 further iterations
were carried out to estimate aðE0Þ. Our findings as a
function of the lattice size are shown in Fig. 3.
Once aðE0Þ has been obtained for all energies Ei

0 ¼
i� �E (we here only consider positive energies), the
density of states �ðEÞ can be easily constructed from (5):

�ðEÞ ¼ Yk
i¼1

eaðEi
0
Þ�E expfaðE0ÞðE� Ek

0Þg; (15)

for Ek
0 � E< Ekþ1

0 . Thereby, we have normalized the

density of states such that �ðE ¼ 0Þ ¼ 1. Our numerical
result is shown in Fig. 4. In order to estimate any influence
of the discretization error, we have calculated the density
of states by splitting the energy interval [0, Emax] into 1000
and 5000 energy intervals. Both curves fall on top of each
other in Fig. 4. We also show the corresponding result for
the SU(3) gauge theory. As a proof of concept that our
numerical approach does yield high precision expectation
values, we have calculated the average plaquette hEi=Emax

using (3). As expected, only a small energy window with
aðEÞ � � significantly contributes to the expectation
value. Care has been taken to handle potentially large
numbers. We have compared our result with that from
a standard method using local-hybrid Monte Carlo
calculations. A very good agreement is observed. An ob-
servable which is generically difficult to estimate due to
cancellations is the specific heat, which we define by

FIG. 2 (color online). The statistical error for the estimate of
aðE0Þ for lattice sizes 104 . . . 204.

FIG. 3. The estimates for aðE0Þ for E0 ¼ 0:650� 6N4 as a
function of the lattice size.

FIG. 4 (color online). The logarithm (base 10) of the density of
states for the SU(2) and SU(3) gauge theories using a 104 lattice.
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	ð�Þ ¼ ðhE2i � hEi2Þ=6N4, where the expectation values
are obtained by means of (3). Our numerical findings for 	
are also shown in Fig. 5. We have checked for a few �
values that our result agrees with that obtained by standard
methods.

We have finally tested our approach for the compact
U(1) gauge theory Here, the links are U(1) group ele-
ments, i.e., U�ðxÞ ¼ expfi��ðxÞg with ��ðxÞ ¼ �
 . . .


being the dynamical degrees of freedom featuring in the
functional integral with a constant measure. By means of
a large scale investigation on the basis of the Borgs-
Kotecky finite size scaling analysis, it has been finally
established in Ref. [9] that compact U(1) possesses
a weak first-order phase transition at � ¼ �c �
1:0111331ð21Þ (in the infinite volume limit). An unmis-
takable sign for a first order transition is the characteristic
double-peak structure in the action probability density,
i.e., P�ðEÞ ¼ �ðEÞ expf�Eg, for � ! �c. It turns out

that this double-peak structure is very sensitive to varia-
tions of � allowing a high precision determination of �c

at finite volume, i.e., the critical coupling for which the
peaks are of equal height. Note that we have normalized
P�ðEÞ such that its maximum value equals one. The

critical couplings �c, listed in the graph in Fig. 6, are
in good agreement with those of Ref. [9].

In conclusion, we have developed a modified version of
the Wang-Landau algorithm suitable for theories with
continuous degrees of freedom. We have shown that the
density of states for a SU(2) gauge theory can be calcu-
lated over a range of 120 000 orders of magnitude even

for a lattice as large as 204. Our approach reliably repro-
duces the critical couplings of the weak first order tran-
sition of the compact U(1) gauge theory. A careful
investigation of the statistical and possible systematic
errors (from which our results seem to be free) will be
reported elsewhere. Using the Cabibbo-Marinari method,
our approach can be generalized to SUðNcÞ Yang-Mills
theories. Quantities of interest which are earmarked for
our approach are thermodynamic potentials [10], vortex
free energies [11], and electric fluxes for the study of
the mass gap and confinement [12]. Work is in progress
for generalizing the present method to deal with complex
action systems, with the view of using it in finite density
QCD.
This work is supported by STFC under the DiRAC

framework. We are grateful for the support from the
HPCC Plymouth, where the numerical computations
have been carried out. B. L. is supported by the Royal
Society and by STFC
Note added.—After this Letter was published, we

learned of Ref. [13], where a similar strategy was inves-
tigated for discrete spin systems.
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