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Using a novel theoretical approach, we study the mean first-encounter time (MFET) between the two

ends of a polymer. Previous approaches used various simplifications that reduced the complexity of the

problem, leading, however, to incompatible results. We construct here for the first time a general theory

that allows us to compute the MFET. The method is based on estimating the mean time for a Brownian

particle to reach a narrow domain in the polymer configuration space. In dimension two and three, we find

that the MFET depends mainly on the first eigenvalue of the associated Fokker-Planck operator and

provide precise estimates that are confirmed by Brownian simulations. Interestingly, although many time

scales are involved in the encounter process, its distribution can be well approximated by a single

exponential, which has several consequences for modeling chromosome dynamics in the nucleus. Another

application of our result is computing the mean time for a DNA molecule to form a closed loop (when its

two ends meet for the first time).
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The mean time for the two ends of a polymer to meet
[Fig. 1(a)], starting from an open configuration, is a clas-
sical and important problem in polymer dynamics that has
several implications in DNA looping and in cellular biol-
ogy where a gene can be activated when a transcription
factor bound far away from the promoter site is brought
near the active site [1–3]. Despite much effort both theo-
retically and numerically [4–8], the time scales involved in
the formation of a polymer loop by bringing the two ends
together remain unclear.

The mean first-encounter time (MFET) is defined as
the first arrival time for the end monomer into a ball of
radius ", centered at the other polymer end [Fig. 1(a)].
Interestingly, the MFET does not depend only on the radius
" but also on the polymer length N (measured in the
number of monomers). Indeed, an interesting feature of
polymer dynamics is the long memory, where the arrival
time depends strongly on the initial condition. This prop-
erty originates from the internal motion of the polymer
(characterized by the Rouse modes [9]). Specifically, the
slowest relaxation time which is proportional to N2 [10].
The MFET depends also on the initial end-to-end distribu-
tion [6,7,11], a result that was first obtained from a
one-dimensional diffusion reduction approach for the
end-to-end distance variable. Thus the MFET depends on
the radius " and on the slowest relaxation time. Recently,
these two time scales were clearly numerically observed
[4,12] in a study showing two regimes, depending whether

the ratio
ffiffiffiffi
N

p
"=b is of order 1 or � 1, where b is the

standard deviation of the bond length. In the first regime,

the MFET depends on " and scales as N3=2, while in the
second, it is dominated by N2 and is independent of ". In
summary, the MFET shows mixed scaling laws [13] with
N. In addition, in more realistic polymer models such as

wormlike-chain model [14] and with hydrodynamical
forces, self-avoidance and Coulomb interactions [15,16],
it was shown numerically and using some analytical con-
siderations for the end-to-end distance that the MFET
depends on several parameters such as the polymer length
and the bending elasticity. However, it is still unclear how
to extract the precise dependency with N (scaling law).
No systematic approach from first principle was used to

derive an expression for the MFET. As it is a rare event, an
analytical formula will facilitate to explore a large fraction
of the parameter space, difficult to access numerically or
experimentally. Using the end-to-end distance as a drastic
approximation of the dynamics, it has been [8] possible to
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FIG. 1 (color online). First end-to-end encounter time for a
Rouse polymer. (a) Scheme of a polymer loop: the two ends are
located at a distance of " from one another. (b) Histogram of the
first-encounter times (FETs) obtained from Brownian simula-
tions in three dimensions (full line) and fitting with two expo-
nentials (dashed line) for N ¼ 16, 32, 64 (left to right) and
" ¼ 0:1b. One exponential is enough for small N (see next
figure), while the full dynamics is well captured by at least
two for larger N. (c) MFET as a function of the radius " in three
dimensions. Comparison of the Brownian simulations (full line)
with the reciprocal of the first term in the expansion of the first
eigenvalue [Eq. (17)] (dashed line) and the full ansatz [Eq. (1b)]
(circles).
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formulate the MFET in terms of a mean first passage time
equation [17]. However, as already noticed ‘‘problems of
this type may appear simple but are in fact very difficult’’
[8]. Here we undertake this challenge by formulating the
MFET as a boundary value problem in the high dimen-
sional polymer configuration space.

Our main results consist of formulas for MFET h��i in
dimension two and three, that account for the two regimes
mentioned above and map out the crossover between the
two scaling terms. In addition, we found that the MFET is
well approximated by the expansion of the first eigenvalue
for the Fokker-Planck operator associated to the Rouse
polymer dynamics. We obtain in dimension two and three,

respectively, for small " and N such as
ffiffiffiffi
N

p
"=b � 1 [see

Eq. (20)],

h�"i2d ¼ N

2D�
log

� ffiffiffi
2

p
b

"

�
þ A2

b2

D
N2 þOð1Þ; (1a)

h�"i3d ¼
�
N�

�

�
3=2

ffiffiffi
2

p
D4�"

þ A3

b2

D
N2 þOð1Þ; (1b)

where " is the radius centered at one end,D is the diffusion
coefficient, � ¼ dkBT=b

2 is the spring constant with d the
spatial dimension, kB is the Boltzmann coefficient and T
the temperature. The coefficients A2 and A3 (see Fig. 3 for
explicit values) are derived from the second order expan-
sion of the first eigenvalue and weakly depend on ". We
compute them numerically. Using the approximation for
end-to-end dynamics of a polymer [8], the search process
was analyzed as a two step process [13] allowing the
authors to postulate Eq. (1b), whereas here we derive these
scaling laws from considering the polymer configuration
space. Although these formulas are derived for fixed N and
small ", we shall see that they are in fact valid for a large
range of N. Finally, we show that the distribution of the
first-encounter time (FET) can be well approximated by a
sum of several exponentials and in most cases a single one
is enough. This last result is surprising and has several
consequences in understanding the complex chromosomal
behavior such as telomere clustering or chromosomal loop-
ing inside the nucleus [18,19].

End-to-end encounter in the configuration space.—The
stochastic description is that of the Rouse polymer [9],
made of a monomer chain at the points Rn (n ¼
1; 2; . . . ; N) and driven by independent Brownian motions
in a force generated by the harmonic potential

�ðR1; . . . ;RNÞRouse ¼ �

2

XN
n¼1

ðRn �Rn�1Þ2; (2)

where � is the spring constant. Each monomer interacts
only with its two neighbors (except for the end points). We
neglect all the other possible interactions such as hydro-
dynamics and allow the polymer to cross itself. In the
Smoluchowski’s limit of the Langevin equation [17], the
dynamics of monomer Rn is described by

dRn

dt
¼ �DrRn

�Rouse þ
ffiffiffiffiffiffiffi
2D

p dwn

dt
; (3)

for n ¼ 1; . . . ; N, where wn are independent d-dimensional
Brownian motions with mean zero and variance 1.
The two ends RN , R1 meet within a distance of " < b:

jRN �R1j � ": (4)

In the Rouse coordinates, up ¼ P
N
n¼1 �

n
pRn [9] where

�n
p ¼

8>>><
>>>:

ffiffiffi
1
N

q
; p ¼ 0ffiffiffi

2
N

q
cos

�
ðn� 1=2Þ p�N

�
; otherwise

(5)

condition (4) becomes

��������2
ffiffiffiffi
2

N

s X
podd

up cosðp�=2NÞ
��������� ": (6)

The end-to-end encounter is independent of the coordinate
u0, which is the center of mass. Thus, the MFET becomes
the mean first passage time for the ðN � 1Þd-dimensional
stochastic dynamical system

u ðtÞ ¼ ðu1ðtÞ; . . . ;uN�1ðtÞÞ 2 ��� . . .�� ¼ ~�; (7)

where � ¼ R2 or R3 and

dup
dt

¼ �Dp�pup þ
ffiffiffiffiffiffiffiffiffi
2Dp

q d~wp

dt
; (8)

[Dp ¼ D, �p ¼ 4� sinðp�=2NÞ2 and p ¼ 1; . . . ; N � 1]

to the boundary of the domain S� ¼ fP 2
~� such that dist ðP;SÞ � "ffiffi

2
p g. Each ~wp is an independent

d-dimensional Brownian motion with mean zero and vari-
ance 1, ‘‘dist’’ is the Euclidean distance and

S ¼
�
ðu1; . . . ;uN�1Þ 2 ~�jX

podd

up cosðp�=2NÞ ¼ 0

�
(9)

is a submanifold of codimension d in ~�. The probability
density functionpðuðtÞ ¼ x; tÞ characterizes the dynamics of
uðtÞ and satisfies the forward Fokker-Planck equation [17]:

1

D

@pðx; tÞ
@t

¼ �pðx; tÞ þ r � ½r�pðx; tÞ� ¼ Lp;

pðx; 0Þ ¼ p0ðxÞ; (10)

with boundary condition pðx; tÞ ¼ 0 for x 2 @S�, p0ðxÞ is
the initial distribution and � ¼ 1

2

P
p�pu

2
p (we shall work in

units of kBT). The solution of Eqs. (10) can be expanded as

pðx; tÞ ¼ X1
i¼0

aiw��
i
ðxÞe���

i tDe��ðxÞ; (11)

where w��
i
ðxÞ and ��

i are respectively the eigenfunctions and

eigenvalues of the operator L in �� ¼ ~�� S� and ai are
coefficients. The probability distribution that the two ends
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have not met before time t is pðtÞ ¼ Prf�� > tg ¼R
��

pðx; tÞdx, where the first time it happens is

�� ¼ infft > 0; uðtÞ 2 @S�g: (12)

Using expansion (11), pðtÞ ¼ P1
i¼0 Cie

���
i Dt where Ci ¼R

��
p0ðxÞw��

i
ðxÞdxR��

w��
i
ðxÞe��ðxÞdx. Starting with an

equilibrium distribution p0ðxÞ ¼ j ~�j�1e��ðxÞ, we have

Ci ¼ j ~�j�1ðR��
w��

i
ðxÞe��ðxÞdxÞ2 and finally,

h��i ¼
X1
i¼0

Ci

D��
i

: (13)

Our goal is now to estimate the eigenvalues and the coef-
ficients Ci. First, for N not too large, a single exponential is
sufficient to approximate the FET [Fig. 1(b)]N ¼ 16 and 32,
[pNðtÞ ¼ �Ne

��Nt] and " ¼ 0:1b. Here �16 ¼ 0:0125b�2,
�32 ¼ 0:0063b�2, while for long polymers, a sum of two
exponentials is more accurate to account for the beginning of
the histogram pNðtÞ ¼ C0e

���
0t þ C1e

���
1
t. ForN ¼ 64, we

have ��
0 ¼ 0:0012b�2, ��

1 ¼ 0:0375b�2, C0 ¼ 0:99, C1 ¼
0:28. Although the two exponential approximation works
well for small " < 0:2b, we needed four exponents for larger
" (0:4b). Indeed, for this value, the series approximation is
less precise. We use a best fitting procedure to extract the
parameters ��

i andCi. Interestingly, for a significant range of
N 2 ½4–64�, C0 � 1, while C1 remains approximately con-
stant for a given value of ". For example, for " ¼ 0:1b, C1

varied with N from 0.2 to 0.28 [Fig. 2(c)]. Interestingly, we
observe that for " " , C0ð"Þ is decreasing while for " " ,
C1ð"Þ is increasing. At this stage, we conclude that the first
two exponentials are sufficient to study the FETand we shall
now compute the first eigenvalues ��

0 and ��
1.

Estimation of the two first eigenvalues.—The eigenval-
ues ��

i , i ¼ 0 and 1, of the operator L [Eq. (10)] are
obtained by solving the forward Fokker-Planck equation

in RdðN�1Þ, where the absorbing boundary is given on the
tubular neighborhood of the d-dimensional submanifold S.
Indeed, for small ", the perturbation expansion of the
eigenvalues is obtained for the Laplace operator with an
absorbing boundary condition on the tubular neighborhood
S� [20], which gives for d ¼ 3, 2, respectively,

��
i ¼ �0

i þ c2�
Z
S
w2

�0
i

dVx þOð�2Þ; (14)

��
i ¼ �0

i þ
2�

log�

Z
S
w2

�0
i

dVx þO
��

1

log�

�
2
�
; (15)

where the eigenfunction w�0
i
and eigenvalues �0

i are asso-

ciated with the nonperturbed operator (no boundary). The

volume element dVx ¼ e��ðxÞdxg, dxg is a measure over

the submanifold with c2 ¼ 2�3=2

�ð3=2Þ [20]. Here the unper-

turbed eigenfunctions w�0
i
are products of Hermite poly-

nomials [21], depending on the spatial coordinate, and the
eigenvalues �0

i are the sum of one dimensional eigenvalues

obtained in the product. The first eigenfunction associated

with the zero eigenvalue is w�0
0
¼ j ~�j�1=2, while the ones

associated with the first two modes (p ¼ 1, 2) are (w�0
1;j
¼ffiffiffiffiffiffi

�1
p j ~�j�1=2uj1) and (w�0

2;j
¼ ffiffiffiffiffiffi

�2
p j ~�j�1=2uj2) with �0

1 ¼ �1

and �0
2 ¼ �2, respectively.

The main result here is an explicit computation of the
first eigenvalue for small ". Starting from relation (14) in
dimension three with �0

i ¼ 0, we get

��
0 ¼

c2�
R
S e

��ðxÞdxg
j ~�j þOð�2Þ: (16)

This is the ratio of the closed polymer ensemble to the
polymer configuration space. A straightforward computa-

tion with the potential � gives j ~�j ¼ R
� e��ðxÞdxg ¼

½ð2�ÞðN�1ÞQ
N�1
1

�p
�d=2, while using a parametrization of the con-

straint (9), we get
R
S e

��ðxÞdxg ¼ ½ð2�Þ
N�2

Q
podd

!2
pQ

p
�pð

P
podd

!2
p

�p
Þ
�d=2,

where !p ¼ cosðp�=2NÞ. Finally, summarizing these re-

sults, using a direct computation, we obtain that for fixedN
and small "

a b

c

FIG. 2. The first two eigenvalues of the FET probability
[Eq. (10)]: (a) Using Brownian simulations (full line) in three
dimensions and theoretical value, we extract the zero eigenvalue
��
0 [Eq. (17)] (dashed line) for " ¼ 0:01, 0.1, 0.2, 0.4 (bottom

up). The first nonzero eigenvalue (cross points) and the theoreti-
cal value (dashed line) are computed from Eq. (19). (b) Two
dimensional version of (a) for the zero eigenvalue only for
" ¼ 10�4, 10�3, 10�2 (bottom up). (c) The coefficients C0 and
C1 are obtained from Brownian simulations in three dimensions
for " ¼ 0:1 (full line), " ¼ 0:2 (dashed line), " ¼ 0:4 (cross
points) for different polymer lengths. The upper curves corre-
sponds to C0 while the lower ones to C1.
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��
0 ¼

8>>>><
>>>>:

�
�
N�

�
3=2

4��þOð�2Þ for d ¼ 3;

2�
N logðb�Þ

þO
��

1
log�

�
2
�

for d ¼ 2:

(17)

This result shows that for small", theMFETdepends linearly
on 1

" , confirmed by Brownian simulations [Fig. 1(c)]. Using

a similar analysis, we obtain for large N that

��
1 � �1 þ �c2

�
�

N�

�
3=2

�
1� 8

�2

�
þOð�2Þ; (18)

��
2 � �2 þ

�
�

N�

�
3=2

4��þOð�2Þ: (19)

Surprisingly, we have found that the next smallest eigenvalue
contributing to the FET is��

2 (affiliated withw�0
2;j
) [Fig. 2(a)]

but not��
1. All of these estimates are obtained for fixedN and

small ". WhenN is not too large, the MFET is well approxi-
mated by 1

��
0
. However, when " or N are increasing, more

terms are needed in the expansion of ��
0, while the other

eigenvalues do not contributemuch, as can be observed in the
spectral gap in the log scale [Fig. 2(a)]. This result confirms
that the FET is almost Poissonian. In addition, a direct
computation shows that the second term in the expansion
of ��

0 is proportional to 1=N. Because C0 � 1, using the first
eigenvalue in relation (13), we obtain the approximation (in
dimension 3)

h�"i3d � 1

D��
0

¼ 1

D½ð �
N�Þ3=24��� A�2=Nb4� ; (20)

where A is a constant and using that � ¼ "ffiffi
2

p , we obtain

relation (1b). We confirm the validity of the MFET formula
(1) for a large range ofN with Brownian simulations (Fig. 3).
The value A3, obtained from the fitting procedure is close
to the coefficient of N2 in Eq. (13) of Ref. [13] (0:053b2=D

for our parameters), estimated from the Wilemski–Fixman-
approximation method [6] of the MFET.
To conclude, we obtain three unpredictable results: First,

the FET is well approximated by a single exponential,
showing that the associated stochastic process is almost
Poissonian. Consequently, modeling cellular biology
processes such as nuclear organization, chromosomes or
telomere motion can be well characterized by a single
parameter, instead of using the full polymer dynamics.
This approximation allows us to study telomere clustering
in the Yeast nucleus [19]. Another example includes the
dynamics of DNA repair [22] or the arrival of a DNA
fragment to a small target. Second, by increasing the radius
" or the sizeN, the asymptotic for the MFET is obtained by
the other terms in the expansion of the first eigenvalue, but
not by higher order eigenvalues. Two scales are involved in

the MFET, one proportional to N2 and the other to N3=2,
but both are contained in the first eigenvalue and do not
arise from higher ones. Finally, it is surprising that the
regular perturbation of the Fokker-Planck operator in "
introduces a novel scale with N in all eigenvalues. A
complete expansion for the MFET has to be found and it
would be interesting to derive an exact value for the con-
stants A2 and A3.
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