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Flowing blood displays a phenomenon called margination, in which leukocytes and platelets are

preferentially found near blood vessel walls, while erythrocytes are depleted from these regions. Here

margination is investigated using direct hydrodynamic simulations of a binary suspension of stiff (s) and

floppy (f) capsules, as well as a stochastic model that incorporates the key particle transport mechanisms

in suspensions—wall-induced hydrodynamic migration and shear-induced pair collisions. The stochastic

model allows the relative importance of these two mechanisms to be directly evaluated and thereby

indicates that margination, at least in the dilute case, is largely due to the differential dynamics of

homogeneous (e.g. s-s) and heterogeneous (s-f) collisions.

DOI: 10.1103/PhysRevLett.109.108102 PACS numbers: 47.63.Cb, 47.57.E�, 47.63.mh

Introduction.—Blood is a multicomponent suspension
consisting primarily of red blood cells (RBCs) along with
trace amounts of other components, primarily leukocytes
and platelets [1,2]. Under physiological flow conditions,
both the leukocytes and platelets segregate near the vessel
walls [3], a phenomenon known as margination, while the
RBCs tend to be depleted in the near-wall region forming a
so-called ‘‘cell-free layer’’ [1,2]. Leukocytes are larger
than RBCs and platelets smaller, but both are considerably
stiffer than RBCs [4]; this difference is believed to play an
important role in their margination. In addition, in illnesses
such as malaria and sickle cell disease, the RBCs them-
selves are known to become stiff, and these stiffened cells
also marginate [5]. Furthermore, delivery of drugs to tu-
mors using particles injected into the bloodstream is a
major goal of current cancer research [6]; margination
may influence the distribution and thus the efficacy of
these particles. Finally, there are many microfluidic appli-
cations where differences in the margination properties of
various blood components are exploited to effect their
separation [2,5,7].

Despite the importance of flow-induced segregation and
margination phenomena in particle mixtures like blood, a
mechanistic understanding is elusive [2]. The goals of the
present work are to establish the mechanisms of rigidity-
based margination in confined flows and to illustrate that
these mechanisms are generic for multicomponent suspen-
sions. We do this in two parts. First, we consider direct
hydrodynamic simulations of a model problem that isolates
the effect of stiffness on margination: a binary suspension
of fluid-filled elastic capsules subjected to simple shear
flow in a planar slit [8]. The two components of the binary
mixtures have unequal membrane rigidities—the compo-
nent with the higher rigidity is termed stiff, while the
component with the lower rigidity is termed floppy.
Additionally, we employ an idealized master equation
(ME) model of the suspension dynamics that incorporates
the two key transport mechanisms in confined suspensions:

(1) wall-induced particle migration and (2) particle dis-
placements in homogeneous (e.g. stiff-stiff) and heteroge-
neous (stiff-floppy) pair collisions. We introduce a novel
hydrodynamic Monte Carlo (HMC) simulation technique
to find steady-state concentration distributions for this
model. In contrast to direct numerical simulations, the
ME-HMC approach allows the various aspects of the par-
ticle dynamics to be independently controlled, thereby
enabling delineation of their role in the segregation
behavior.
Using these approaches, we are able to isolate the effect

of heterogeneous pair collisions and thus demonstrate their
dominant role, at least in dilute systems, in the observed
margination behavior. The approach and mechanisms pre-
sented here are generic for multicomponent suspensions—
the model only takes as inputs the migration behavior of
the various components of the suspension and their dis-
placements upon homogeneous and heterogeneous colli-
sions. Therefore, it is extensible to other systems including
mixtures of particles of unequal sizes and shapes, thus
encompassing whole blood flow as well as flow of drug
delivery particles in the bloodstream.
Formulation.—We consider a suspension of fluid-filled

neo-Hookean capsules [8] subjected to simple shear flow
with shear rate _� between infinite parallel walls at y ¼ 0
and y ¼ H [Fig. 1(a)]. At rest, all capsules are spheres with
the same radius a. The rigidity of a particle is characterized
by its membrane shear modulus G, which is expressed in
terms of the nondimensional capillary number Ca ¼
� _�a=G, where � is the viscosity of the suspending fluid.
The capsules in a binary mixture with a lower Ca ¼ Cas
are termed stiff, while the capsules with a higher Ca ¼ Caf
are termed floppy; the number fraction of the floppy par-
ticles will be denoted Xf. The viscosity ratio � of the fluid

inside and outside the particle is unity. The Reynolds
number is taken to be negligible.
In a dilute suspension of particles, particle interactions

can be treated as a sequence of uncorrelated pair collisions
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[9,10]. In addition, since the capsules are deformable, they
also have a wall-induced migration velocity vmðyÞ away
from the wall [11]. The effect of the pair collisions and the
wall-induced particle migration can be consistently
described by a kinetic master equation (cf. [9]). For sim-
plicity, we focus here on a model of a monolayer in the x-y
(flow-gradient) plane—extension to three dimensions is
straightforward [9]. The mean area number density of all
the particles in the monolayer is denoted n0, such that the
areal fraction in the x-y plane at rest is �a ¼ �a2n0.
The mean area number density of each of the species
� in the mixture is denoted n�0 , while its distribution in

the y direction is denoted n�ðyÞ. In this case, the master
equation is

@n�ðyÞ
@t

¼�@ðv�
mn

�Þ
@y

þ XNs

�¼1

�Z y�H

y
½n�ðy����Þ

�n�ðy������Þ�n�ðyÞn�ðy��Þ� _�j�jd�
�
;

(1)

where � is the precollision pair offset in the y direction,
���ð�Þ is the cross-stream displacement of particle of type
� after collision with another particle of type �, while
the sum is over all the species Ns in the suspension; see
Fig. 1(b) for a schematic of a pair collision. The first term
on the right-hand side arises from the wall-induced migra-
tion, while the integral term represents the effect of pair
collisions [9].

This equation is analogous to the Boltzmann equation
for rarefied gases [12,13]. The dynamic simulation
Monte Carlo (DSMC) approach is a popular technique to
obtain solutions of the Boltzmann equation [12,13]. The
current work is inspired by the DSMC approach, which has
also found interest in recent works on colloidal suspensions
of rigid spheres [9]. By analogy, we term the method in the
present work as the hydrodynamic Monte Carlo (HMC)
method. As in the case of the DSMC technique [12,14], the
HMC approach is appropriate in the dilute limit and
requires the assumption of chaotic particle dynamics, an
assumption that is valid for the particulate flows considered
here [15].
In the HMC approach, the y positions of Np particles are

followed in time. We set Np ¼ 100 here; simulations with

larger Np gave indistinguishable results. Each particle is

assumed to represent an infinite number of particles at the
same y position randomly distributed in the flow direction
with an average spacing of L, where L is given by L ¼
Np=ðn0HÞ. A distinguishing feature of the HMC (or

DSMC) approach is that the collisions between particles
are treated probabilistically [14]. In the present study, we
neglect pair collisions with large initial offsets � > �cut, as
their effect on cross-stream displacement is weak; we take
�cut ¼ 2:5a here. A time step of the simulation involves
choosing a pair of particles which satisfies the condition
� � �cut. The pair is subsequently selected or rejected for
collision with a probability proportional to the relative
velocity of approach of the two particles _�j�j [9,12,16].
An important aspect of the simulation is the time interval
between collisions �t, because the wall-induced particle
migration occurs simultaneously with the collisions. In
order to determine �t at each time step, we assume that
the number of particle collisions with time follows a
Poisson process with a mean collision frequency 	 (	 is
estimated [17]), such that the time interval between colli-
sions is distributed with probability Pð�tÞ ¼ 	e�	�t [16].
The distribution of time interval between collisions results
from the variation of particle positions in the flow direc-
tion, which is not explicitly specified. Once the collision
pair and time interval are set, we update positions of all
particles k as ykðtþ �tÞ ¼ ykðtÞ þ vm�tþ�k, where �k

is nonzero only for the colliding particle pair (i, j). If the
collision is homogeneous, then �k ¼ �ss or �ff for stiff
and floppy particles, respectively. If the collision is hetero-
geneous, then�k ¼ �sf for the stiff particle and�k ¼ �fs

for the floppy one. The procedure outlined above is
repeated until a statistical steady state is obtained. Other
details of the method can be found in Koura [16], whose
approach is closely followed here.
Pair collisions and wall-induced migration.—The HMC

method requires as inputs the cross-stream displacements
��� in pair collisions and the wall-induced migra-
tion velocity v�

m. These were computed using an acceler-
ated boundary integral method [8,18]; also see the

FIG. 1 (color online). (a) System geometry, (b) schematic of
particle trajectories in a pair collision, (c) isolated particle
migration velocity at confinement ratio 2a=H ¼ 0:197, and
(d) cross-stream displacement � in various types of pair colli-
sions as a function of the initial offset �. Here s refers to the
stiffer particle (Cas ¼ 0:2), while f refers to the floppier particle
(Caf ¼ 0:5).
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Supplemental Material [19]. Figure 1(c) shows the isolated
particle migration velocity as a function of y=H for
Cas ¼ 0:2 and Caf ¼ 0:5 capsules at a confinement ratio

2a=H ¼ 0:197. Results for ���ð�Þ for the same two spe-
cies (in an unbounded domain) are shown in Fig. 1(d). For
offsets � & a, �ff < �ss. Furthermore, an important fea-
ture in this plot, first reported in Ref. [8], is that the
displacement of the stiffer particle in heterogeneous colli-
sions is higher than that of the floppy particle (�sf > �fs),
while the cross-stream displacements in homogeneous
collisions are between these two limits, i.e., �fs < �ff,
�ss < �sf. This ordering will turn out to be crucial in
determining the segregation behavior.

The above particle migration velocity and pair collision
results were determined in idealized systems, namely, by
considering an isolated particle and an unconfined system,
respectively. Our interest is in a confined suspension, so we
expect that corrections will be necessary to both the mi-
gration and the pair collision results. For the migration
velocity vm, we note the wall-induced migration is due to
the disturbance velocity created by the particle’s image,
and is a far-field effect [11]. As a result of its far-field
nature, in a suspension of particles, it can be expected that
the wall-induced migration of a particle will result not
only due to interaction with its own images, but also due
to images of other particles—this can be expected to
introduce an averaging effect in a suspension of particle
mixtures. To model this, we modify the migration veloc-

ities according to the following equation: v�;s
m ¼ 
v�

m þ
ð1� 
ÞPNs

1 X�v
�
m, where v

�;s
m is the migration velocity of

the species � in the suspension and 
 is an adjustable
parameter. By taking 
 ¼ 1, we recover the isolated parti-
cle migration velocity for each species, while for 
 ¼ 0,
each of the species in the suspension has the same migra-
tion velocity.

We adopt a similarly simple model to account for the
confinement effects on the cross-stream displacement � in
pair collisions. For a spherical particle with center at y ¼
a, its� in a pair collision is expected to be zero as it will be
touching the wall, while its�will approach the unconfined
result at large particle-wall separations. To account for this
effect, we multiply the � of the particle in an unconfined

system by a factor � ¼ 1� e�ðdw�aÞ=a, where dw is the
distance of the particle from the nearest wall, assumed to
satisfy dw > a. Despite this correction factor, particles
might still occasionally overlap with the walls at high
volume fractions, though that did not occur in the regime
investigated here.

Validation.—We next validate the HMC method by
comparing it with the results of detailed boundary integral
(BI) simulations [8,18]. The suspensions in the BI simula-
tions are fully three-dimensional, but otherwise are similar
to those in the HMC method. The particle volume fraction
in the BI simulations will be denoted�v. The HMC model
has two adjustable parameters, n0 (or�a) and 
, which can

be tuned to obtain good agreement with BI simulations for
a given suspension. In the present work, we seek the
agreement of the mean normalized distance of a species

from the centerline d̂ ¼ 2 �d=H [see Fig. 1(a)] between the
two methods.
The parameters n0 and 
 in the HMC method are

expected to depend on �v and 2a=H, while their depen-
dence on Cas, Caf, and Xf is expected to be weak. To

demonstrate this, we focus on suspensions with�v ¼ 0:04
and 2a=H ¼ 0:197 held fixed. We then consider the BI
results for a pure suspension with Ca ¼ 0:2, and tune the

value of n0 in the HMCmethod to obtain a good match in d̂
between the two methods; this yields n0 ¼ 0:026a�2 (or
�a ¼ 0:082). We next consider BI results for a binary
mixture with Cas ¼ 0:2, Caf ¼ 0:5, and Xf ¼ 0:5 and

tune the value of 
 in the HMC method to obtain a good

agreement in d̂ of both the species between the two meth-
ods; this yields 
 ¼ 0:23. Having set the value of n0 and 
,
the HMC method can then be used to predict results
for other suspensions at the same �v and 2a=H. To estab-
lish this, we consider the same binary mixture as above

(Cas ¼ 0:2, Caf ¼ 0:5) and predict d̂ for both the species

for a range of Xf and compare them with the corresponding

BI results [Fig. 2(a)]. Excellent agreement can be observed
at all values of Xf. Similar close agreement was also

observed for different sets of (Cas, Caf), namely, (0.1,

0.5) and (0.3, 0.4) with no adjustment of n0 and 
 (see
the Supplemental Material [19]). Lastly, we consider a
suspension with (Cas, Caf) of (0.2, 0.5) at �v ¼ 0:12 and

2a=H ¼ 0:197, and we tune the values of n0 and 
 as
discussed above, which yield n0 ¼ 0:093a�2 (or �a ¼
0:292) and 
 ¼ 0:63. Subsequently, we predict d̂ at various
Xf in this system [Fig. 2(b)]. Excellent agreement is

observed even at this higher volume fraction.

Besides the averaged measure d̂, we also compared the
particle number density distribution in the wall normal
direction in the HMC and BI simulations. Results for the
normalized number density distribution n̂�ðyÞ ¼ n�ðyÞ=n�0
are shown in Figs. 2(c) and 2(d) for the Cas ¼ 0:2 and
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FIG. 2 (color online). (a),(b): Mean normalized distance of a
species d̂ ¼ 2 �d=H from the centerline in HMC (H) and BI (B)
methods in (a) ðCas;Caf; �vÞ ¼ ð0:2; 0:5; 0:04Þ mixture

as a function of Xf and in (b) (0.2,0.5,0.12) mixture.

(c),(d): Normalized number density profile n̂ for (c) stiff and
(d) floppy particles at Xf ¼ 0:5 for the suspension in (a). In all

cases, 2a=H ¼ 0:197.
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Caf ¼ 0:5 mixture at �v ¼ 0:04, 2a=H ¼ 0:197, and

Xf ¼ 0:5; a more complete set of plots is provided in the

Supplemental Material [19]. Very good agreement of n̂
with the BI results is observed in all cases. The agreement
is remarkably good in the region around the centerline,
though the peak near the wall is usually smeared in the
HMC results in comparison to the BI results. Nonetheless,

given the broad agreement of d̂ as well n̂ in HMC and BI
simulations in various suspensions, it is apparent that the
HMC model captures the key aspects of the particle dis-
tributions in these suspensions.

Mechanisms of flow-induced segregation.—A key bene-
fit of the HMC approach is that it allows independent
investigation of the effect of various ingredients of the
particle dynamics on the margination behavior. We focus
here on suspensions with Cas ¼ 0:2, Caf ¼ 0:5, �v ¼
0:04, and 2a=H ¼ 0:197. As discussed above, the HMC
results for this system were generated by setting n0 ¼
0:026a�2 and 
 ¼ 0:23. We first show the plots for n̂
from the full HMC model for both the stiff and floppy
particles at Xf ¼ 0:01 (dilute in floppy) and Xf ¼ 0:99

(dilute in stiff) in Figs. 3(a) and 3(d), respectively. It is
clear from these plots that the stiff particles accumulate in
the particle layer formed nearest to the wall as they become
dilute in the suspension; i.e., they marginate with increas-
ing Xf. In contrast, the floppy particles do the opposite as

they become dilute (Xf decreases), accumulating near the

centerline and thus ‘‘antimarginating.’’ These trends agree

with the detailed boundary integral results of Ref. [8]; also
see the Supplemental Material [19].
To disentangle the effects of wall-induced migration and

pair collisions, we now consider a number of control cases.
First, we investigate the impact of heterogeneous colli-
sions, by (i) setting the particle migration velocities of
both the species to the simple average migration velocity
of these two species and (ii) setting �ss and �ff to the
average value for the two species. Therefore, the only
difference between these two species is their behavior in
heterogeneous collisions: �sf >�fs. Plots of n̂ðyÞ for
these simulations are shown in Figs. 3(b) and 3(e). The
difference between �sf and �fs is sufficient to lead to a
segregation between the two species. In fact, as will be
quantified shortly, most of the segregation results from
heterogeneous collisions.
We next examine the effect of differences in migration

velocity on the segregation behavior by setting the cross-
stream displacement in all types of collisions for both
the species to the simple average of the four curves on
Fig. 1(d), yielding �sf ¼ �ss ¼ �fs ¼ �ff. Plots for n̂ðyÞ
in this case are shown in Figs. 3(c) and 3(f). Here too some
segregation is observed, though the degree of segregation
is considerably smaller than in the full model.
The degree of segregation between the two species is

more quantitatively characterized by computing the differ-

ence in d̂ of each of the species from the corresponding

pure species result; this is denoted by�d̂. The plots for �d̂
in various cases described above are shown in Figs. 4(a)
and 4(b) for the stiff and floppy particles, respectively. For
the present parameter set, the degree of segregation from
the full model (case A) and the model where only hetero-
geneous collisions are distinct (case B) are almost identi-
cal, while that resulting from differences in the migration
velocity (case C) is much weaker. In a recent direct simu-
lation study [8], heterogeneous collisions were conjectured
to play an important role in margination. In the simula-
tions, however, it is not possible to deconvolve the effects
of migration and collisions; i.e., one cannot perform con-
trol simulations. The ME-HMC approach does not suffer
from this limitation.
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FIG. 3 (color online). Number density n̂ for stiff (top row) and
floppy (bottom row) particles in simulations at Xf ¼ 0:01 and

Xf ¼ 0:99, from: (a),(d) full model (case A); (b),(e) only differ-

ence between the two species being heterogeneous collisions
(case B); (c),(f) only difference between the two species
being migration velocities (case C). These plots are for
ðCas;Caf; �vÞ ¼ ð0:2; 0:5; 0:04Þ.
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FIG. 4 (color online). The difference �d̂ between d̂ of a
species in the mixture and the d̂ of that species in its pure
suspension for (a) stiff particles and (b) floppy particles in
ðCas;Caf; �vÞ ¼ ð0:2; 0:5; 0:04Þ suspension. The cases A–C

are described in the text.
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Finally, we have investigated the effect of volume frac-
tion on particle dynamics and margination. At �v ¼ 0:12,
the effects of heterogeneous collisions and differential
migration velocities (cases B and C) on margination be-
come comparable (see the Supplemental Material [19]).
Very similar results arise at �v ¼ 0:2 [19]. In the micro-
circulation, the volume fraction of cells is between �v ¼
0:1–0:25 and it appears that, in this regime, both the
migration velocity and the heterogeneous collisions are
playing an important role in the segregation between the
various species.

Conclusions.—To gain a mechanistic understanding of
margination in blood and other multicomponent suspen-
sions, we have introduced an idealized description of the
particle flow dynamics that incorporates the two key trans-
port mechanisms in confined suspensions: wall-induced
migration and hydrodynamic pair collisions. The results
for this model system clarify the important and previously
underappreciated role played by heterogeneous collisions
in the observed segregation behavior. Because differential
behavior in heterogeneous collisions is generic for parti-
cles with contrasting shape or size as well as flexibility, the
insights presented here are also applicable for other mul-
ticomponent suspensions. In particular, they have impor-
tant implications in the design of drug delivery particles for
optimal vascular wall targeting or for separating trace
components of blood in microfluidic devices.
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