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Using a minimal model of cells or cohesive cell layers as continuum active elastic media, we examine

the effect of substrate thickness and stiffness on traction forces exerted by strongly adhering cells. We

obtain a simple expression for the length scale controlling the spatial variation of stresses in terms of cell

and substrate parameters that describes the crossover between the thin and thick substrate limits. Our

model is an important step towards a unified theoretical description of the dependence of traction forces

on cell or colony size, acto-myosin contractility, substrate depth and stiffness, and strength of focal

adhesions and makes experimentally testable predictions.
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Many cell functions, such as spreading, growth, differ-
entiation, and migration are affected by the elastic and
geometric properties of the extracellular matrix [1].
Considerable effort has been devoted to the study of cell
adhesion to elastic substrates [2]. Cells adhere to a sub-
strate via focal adhesion complexes that link the substrate
to the actomyosin cytoskeleton, which in turn generates
contractile forces that deform soft substrates [3]. The
traction forces that the cell exerts on the substrate are
regulated by the cell itself in a complex feedback loop
controlled by cell activity and substrate elasticity.

Two powerful experimental techniques have been devel-
oped to measure forces by cells on substrates: traction
force microscopy, used to probe cell adhesion to continu-
ous substrates [4,5], and the imaging of cell-induced
bending of microfabricated pillar arrays [6]. These two
techniques have also been recently combined [7]. These
experiments have yielded new insight on substrate rigidity
sensing and have opened up new questions on the physics
of individual and collective cell adhesion: What controls
the length scale that governs the penetration of traction
forces? What is the relative role of active cellular contrac-
tility and cell-cell interaction in controlling the emergent
response of cell layers? In this Letter, we describe minimal
models of individual cells and adhering cell colonies that
reproduce qualitatively several experimental findings. The
traction stresses exerted by cells on substrates are extracted
directly from measurements of micropillar displacements
or inferred from the displacements of fiducial markers
embedded in a continuum substrate. It is found that traction
stresses exerted by isolated fibroblasts and epithelial cells
on elastic substrates are localized near the cell edge, while
contractile stresses (referred to below as cellular stresses)
built up inside the cellular material with largest value near
the cell center [4,8], as shown schematically in Fig. 1. This
behavior, also observed in adherent cell sheets and in mi-
grating cell colonies [9–11], is predicted by our model.
Further, both substrate thickness and stiffness affect cellular

and traction stresses [12]. The magnitude of the traction
stress increases with substrate stiffness, saturating at
large stiffness [8], and it decreases sharply with substrate
thickness, indicating that cell colonies on thick substrates
only probe a portion of substrate of effective depth compa-
rable to the lateral extent of the cell colony [13]. Both trends
are reproduced by our model (Fig. 3).
Our model builds on recent work [14,15] describing the

cell or cell layer as a contractile elastic medium, with local
elastic response of the substrate (as appropriate for micro-
pillar arrays or very thin substrates). In contrast, here we
consider substrates of finite thickness where the nonlocal-
ity of the elastic response must be included.While previous
studies have analyzed the deformations of finite-thickness
substrates due to point traction forces on their surface
[16,17], our work considers the inhomogeneous traction
due to an extended contractile cell layer. A central result
for our work is the expression for the scaling parameter
referred to as the lateral penetration length ‘p (Fig. 1). This

length scale characterizes the in-plane spatial variations of
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FIG. 1 (color online). Schematic of a cell layer of lateral extent
L and thickness hc � L adhering to a substrate of thickness hs.
The build up of contractile stress � in the cell layer is indicated
by the color map, while the traction stresses in the substrate are
shown as vectors (blue online). The spatial variation of both
traction and cellular stresses in the lateral (x) direction are
characterized by the length scale ‘p, referred to as the penetra-

tion length.
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both adhesion-induced traction stresses on the substrate
and cellular stresses within the cell layer in terms of cell
and substrate elastic and geometrical properties. Our
model also quantifies the experimentally observed role
of substrate thickness hs in controlling the mechanical
response of adhering cell layers [12]. If hs is small com-
pared to the lateral extent L of the cell sheet, the substrate
elasticity plays a negligible role in determining the me-
chanical response of the cell. This may explain why traction
forces exerted by cell colonies with L � hs appear insensi-
tive to substrate stiffness [11]. If, in contrast, L � hs,
then substrate nonlocality controls stress build up in the
cell sheet. This crossover may be observable in large cell
colonies on thick substrates. Finally, the importance of
long-range substrate elasticity has also been emphasized in
recent models of cells as active dipoles on a soft elastic
matrix, where it is crucial in controlling cell adhesion
[18,19]. Long-range interfacial elastic stresses coupled
with gel thickness have also been shown to have a profound
effect on focal adhesion growth [20] and to enhance cell
polarization [21,22]. These important effects are not dis-
cussed here.

Contractile cell on a soft substrate.—To illustrate the
importance of substrate nonlocality, we first analyze a
single cell, modeled as a contractile spring of stiffness kc
and rest length ‘c0, adhering to a continuum substrate
(described as an elastic continuum of Young’s modulus
Es and Poisson’s ration �s) via two focal adhesion bonds
(linear springs of stiffness ka) located at x1 and x2 (Fig. 2,
top left) [23]. This is motivated by the experimental
observation that in adhering cells focal adhesions tend to

be localized near the cell periphery [24]. For simplicity, we
consider a one-dimensional model, where the cell lies on
the x axis and the substrate lies in the 0 � z � hs region of
the xz plane. Contractile acto-myosin fibers connect the
focal adhesions and exert active forces of magnitude FA.
Once the cell has fully adhered, the cell-substrate system is
in mechanical equilibrium. Force balance at x1 and x2
yields

ka½u1 � usðx1Þ� ¼ FA � kcðu1 � u2Þ; (1a)

ka½u2 � usðx2Þ� ¼ �FA þ kcðu1 � u2Þ (1b)

with ui the displacements of the contact points xi from their
unstretched positions x02 � x01 ¼ ‘c0, and usðxiÞ the dis-

placement of the substrate’s surface at xi. All displace-
ments are defined with respect to an initial state where the
cell has length ‘c0. The net contraction is then �‘ ¼ lc0 �
ðx2 � x1Þ ¼ u1 � u2. The traction force by the cell on the
substrate is localized at x1 and x2, yielding a traction force
density fTðxÞ ¼ FT�ðx� x1Þ � FT�ðx� x2Þ, with FT ¼
FA � kc�‘. Assuming linear elasticity, the substrate de-
formation is [25], usðxÞ ¼ R1

�1 dx0Gðx� x0ÞfTðx0Þ, where
GðxÞ is the elastic Green’s function at z ¼ hs. For a sub-
strate of thickness hs, we use the approximate form [26]

GðxÞ ¼ 2

�‘c0Es

K0

�
aþ jxj

hsð1þ �sÞ
�

(2)

derived in the Supplemental Material [27], with a the size
of adhesion complexes, providing a short-distance cutoff,
and K0 denotes the modified Bessel function of the second
kind. We obtain FTð�‘Þ ¼ 1

2 keffð�‘Þ�‘, with k�1
eff ¼

k�1
a þ ½Gð0Þ �Gðlc0 � �‘Þ� the effective stiffness of the
cell-substrate adhesions. For �‘ � lc0, keff is independent
of �‘ and FT scales linearly with �‘. Stiffening sets in
for �‘ > ‘c0j1� hsð1þ �sÞ=‘c0j, as shown in Fig. 2 (top
right), with a crossover controlled by the thickness of the
substrate hs. Using FT ¼ FA � kc�‘, we solve for both
�‘ and FT , shown in Fig. 2 (bottom) as functions of the
substrate thickness and stiffness. For very thin (hs ! 0) or
infinitely rigid substrates, where the substrate elasticity
becomes local, �‘ ¼ FA=ðkc þ ka=2Þ, corresponding to a
spring kc in parallel with a series of two focal adhesions
springs ka. In this limit, the traction force saturates to FT ¼
kaFA=ð2kc þ kaÞ. Conversely, for a very soft substrate with
Es ! 0, the contraction is maximal and given by FA=kc,
and FT ! 0. The substrate thickness above which both
cell contraction and traction force saturate is controlled
by the cell size and the substrate elasticity, in qualitative
agreement with experiments [12].
Contractile cell layer.—The continuum limit can be

obtained by considering a multimer of N ¼ ½L=lc0� con-
tractile elemental ‘‘cells’’, connected by springs represent-
ing cell-cell interactions. The outcome is a set of coupled
equations for a contractile elastic medium. For a cell layer
of thickness hc � L (Fig. 1), the force balance equation,
averaged over the cell thickness, is
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FIG. 2 (color online). Top: Schematic of a contractile cell
adhering to a soft substrate (left) and effective spring constant
keff versus cellular strain �‘, showing strain stiffening (right).
Bottom:Cell contraction�‘ (solid blue line) and traction forceFT

(red dashed line) vs substrate stiffness (left) for hs ¼ 10 �m and
as a function of substrate thickness (right) forEs ¼ 500 Pa. Other
parameters: FA ¼ 10 nN, kc ¼ 1 nN=�m, ka ¼ 2:5 nN=�m,
Es ¼ 1 kPa, hs ¼ 10 �m, ‘c0 ¼ 10 �m, �s ¼ 0:4.
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Ya½uðxÞ � usðxÞ� ¼ hc@x�ðxÞ; (3)

where Ya ¼ ka=ðL‘c0Þ describes the effective strength of
the focal adhesions, uðxÞ is the displacement field of the
cellular medium at z ¼ hs, and� is the thickness-averaged

cellular stress tensor, �ðxÞ ¼ 1=hc
Rhsþhc
hs

dz�xxðx; zÞ,
given by �ðxÞ ¼ Bc@xuþ �a, with Bc the longitudinal
elastic modulus of the cell layer. The one-dimensional
model presented here may be relevant to wound healing
assays, where the cell layer is a strip with y-translational
invariance. Although we have neglected components of
the cellular displacements and spatial variations along z,
the cell elastic constants are those of a three-dimensional
cellular medium. The active stress �a ¼ FA=ðLhcÞ arises
from acto-myosin contractility [28]. The substrate defor-
mation at the surface is

usðxÞ ¼ hc
Z

dx0Gðx� x0Þ@0x�ðx0Þ; (4)

with GðxÞ the elastic Green’s function of a substrate of
infinite extent in x, occupying the region 0 � z � hs,
evaluated at z ¼ hs. Equations (3) and (4) can be reduced
to integro-differential equations for the cellular stress, as

‘2a@
2
x�þ�a¼��BcLhc@

2
x

Z L

0
dx0Gðjx�x0jÞ�ðx0Þ: (5)

The length scale ‘a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bchc=Ya

p
controls spatial varia-

tions of cellular stresses induced by the stiffness of the
focal adhesions. It is the size of a region where the areal
elastic energy density Ya‘

2
a associated with focal adhesions

is of order of the areal elastic energy density Bchc of
the cell layer. For a cell monolayer with Bc ¼ 1 kPa,
hc ¼ 0:1 �m, L ¼ 100 �m, ‘c0 ¼ 10 �m, and ka ¼
2:5 nN=�m [3], we get ‘a ’ 6:3 �m, comparable to trac-
tion penetration length seen in experiments on stiff micro-
posts [29,30]. The second term on the right-hand side of
Eq. (5) describes spatial variations in the cellular stress due
to the (generally nonlocal) coupling to the substrate. In the
following, we examine solutions to Eq. (5), considering
various limiting cases for the substrate thickness and
analyze the dependence of traction stresses on cell size,
substrate stiffness, and substrate depth. The equation gov-
erning stress distribution in two-dimensional cell layers is
derived in the Supplemental Material [27].

Thin substrate.—If the substrate’s elastic response can
be approximated as local, as it is the case for hs � L or
for cells on micropillar arrays, the Green’s function is
given by GðxÞ ¼ ½2hsð1þ �sÞ=LEs��ðxÞ. Equation (5)

can then be written as ‘2p@
2
x�þ �a ¼ �, where, ‘p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Bchc=Yeff

p
and Y�1

eff ¼ Y�1
a þ 2hsð1þ �sÞ=Es describes

the combined action of the focal adhesions and the sub-
strate, acting like two linear elastic components in series.
Assuming zero external stresses at the boundary, i.e.,
�ð0Þ ¼ �ðLÞ ¼ 0, the internal stress profile is �ðxÞ ¼
�að1� cosh½ðL� 2xÞ=2‘p�= cosh½L=2‘p�Þ [10,14,15].

The traction stress TðxÞ ¼ YeffuðxÞ, is localized within a
length ‘p from the edge of the cell layer. The penetration

length ‘p can be written as ‘p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2a þ ‘2s

p
, with ‘s ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2BchchsÞ=½Es=ð1þ �sÞ�

p
the square root of the ratio of

the cell’s elastic energy to the elastic energy density of
the substrate. This form highlights the interplay of focal
adhesion stiffness and substrate stiffness in controlling
spatial variation of stresses in the lateral (x) direction.
The two act like springs in series, where the weaker spring
controls the response. If Ya � Es=½2ð1þ �� sÞhs�, then
‘p ’ ‘a, and the stiff substrate has no effect. Conversely, if

the focal adhesions are stiffer than the substrate, then
‘p ’ ‘s. For an elastic substrate with hs ¼ 10 �m,

�s ¼ 0:4, and Es in the range 0.01–100 kPa, ‘s lies in the
range 0:2–17 �m. This leads to typical values of ‘p in the

range 6:3–18 �m for a cell layer of length 100 �m, con-
sistent with experimentally observed traction penetration
lengths on thin continuous substrates [10] and on micro-
pillar posts [9].
Infinitely thick substrate.—If hs � L, the substrate

Green’s function can be approximated as that of an elastic
half plane, GðxÞ ¼ �½2=ð�LEsÞ�½�þ logðjxj=LÞ�, with �
the Euler constant [31]. The solution of Eq. (5) with
boundary conditions �ð0Þ ¼ �ðLÞ ¼ 0 can be obtained
by expanding �ðxÞ in a Fourier sine series as, �ðxÞ ¼P1

n¼1 �n sinðn�x=LÞ and solving the coupled algebraic
equations for the Fourier amplitudes �n given in the
Supplemental Material [27]. The effect of the nonlocal
elasticity of the substrate is controlled by yet another

length scale ‘s1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4BchcL
�Es

q
that can be obtained from the

length ‘s introduced in the case of thin substrate by the
replacement hs ! L and ð1þ �sÞ ! 2=�. This highlights
the known fact that cells or cell layers only ‘‘feel’’ the
substrate up to a thickness comparable to their lateral size
L. For parameter values quoted in the preceding para-
graphs, ‘s1 takes values between 0:35–35 �m for Es in
the range 0.01–100 kPa, indicating that the thin or thick
substrate crossover, although not observable in isolated
cells, should be seen experimentally in cohesive cell layers
where the lateral extent can exceed 100 �m. The cellular
stress and substrate displacement profiles obtained numeri-
cally by summing the Fourier series are shown in Fig. 3
(top). The lateral variation of stresses is now controlled by

the length scale ‘p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2a þ ‘2s1

p
. One consequence of

nonlocal substrate elasticity is that the substrate deforma-
tion shown in the top right frame of Fig. 3 extends outside
the region occupied by the cell layer, indicated by the two
vertical dashed lines. The profile of the local traction stress
displayed in Fig. 3 (bottom frame) shows that the traction
stress is localized near the edge of the cell layer and its
magnitude increases with substrate stiffness. The inset to
Fig. 3 (bottom right) shows the magnitude of the net
contractile moment defined as P ¼ R1

�1 dxxTðxÞ. This

quantity is negative, as expected for contractile systems.
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Its magnitude increases with Es at a rate consistent with
experiments, with a 25% rise in jP j upon increasing the
substrate stiffness by 40% [32], and saturates for very stiff
substrates.

Substrate of finite thickness.—Finally, we consider a
substrate of finite thickness, hs. The calculations are
carried out using the approximate Green’s function given
in Eq. (2), with the replacement ‘c0 ! L. The variation of
the net contractile moment with hs for Es ¼ 10 Pa is
shown in Fig. 3 (bottom left inset). As seen previously in
experiments [12], jP j drops sharply with increasing sub-
strate thickness, quickly reaching the asymptotic value
corresponding to infinitely thick substrates. Thinner sub-
strates are effectively stiffer than thick ones, inducing
larger contractile moments. Our analysis suggests a general
expression for the penetration length ‘p that interpolates

between the thin and thick substrates limits,

‘p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bchc
Ya

þ Bchc
�Es

heff

s
: (6)

Stress penetration is controlled by a substrate layer of
effective thickness h�1

eff ¼ 1
hs2�ð1þ�sÞ þ 1

L given by the geo-

metric mean of the actual substrate thickness hs and the
lateral dimension L of the cell or cell layer. If hs � L, then
heff � 2�hsð1þ �sÞ and stress penetration is not affected
by cell layer size, as in the experiments of Ref [10]. On the

other hand, if hs � L, then cells only feel the effect of the
substrate down to an effective depth L.
Discussion.—In summary, we have examined the depen-

dence of traction stresses in adhering cell layers on the
mechanical and geometrical properties of the substrate.
Using a generic nonlocal model, we provide analytical
results for the effect of cell and substrate properties on
the stress penetration length, that can be tested in experi-
ments. Although the analysis presented here is restricted to
one-dimensional layers, isotropic planar cell layers with
spherical symmetry can also be considered analytically
[33], with similar predictions for the dependence of trac-
tion fields and their moments on substrate mechanical and
geometrical properties. The scaling of traction moments on
cell layer size is, however, different in two dimensions
[10]. The model can be extended to incorporate the effects
of cell polarization, spatial variations in contractility,
heterogeneities in the cell layer or anisotropic elasticity
of the substrate.
We thank Eric Dufresne and Aaron Mertz for many

useful discussions and the anonymous referees for valuable
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No. DMR-1004789, and No. DGE-1068780.
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[5] J. Butler, I. Tolić-Nørrelykke, B. Fabry, and J. Fredberg,

Am. J. Physiol. Cell Physiol. 282, C595 (2002).
[6] J. L. Tan, J. Tien, D.M. Pirone, D. S. Gray, K. Bhadriraju,

and C. S. Chen, Proc. Natl. Acad. Sci. U.S.A. 100, 1484
(2003).

[7] S. R. Polio, K. E. Rothenberg, D. Stamenović, and M. L.
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