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Vortex matter in mesoscopic superconductors is known to be strongly affected by the geometry of the

sample. Here we show that in nanoscale superconductors with coherence length comparable to the Fermi

wavelength the shape resonances of the order parameter results in an additional contribution to the quantum

topological confinement—leading to unconventional vortex configurations. Our Bogoliubov–de Gennes

calculations in a square geometry reveal a plethora of asymmetric, giant multivortex, and vortex–antivortex

structures, stable over a wide range of parameters and which are very different from those predicted by

the Ginzburg–Landau theory. These unconventional states are relevant for high-Tc nanograins, confined

Bose–Einstein condensates, and graphene flakes with proximity-induced superconductivity.
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In the last decades, the effect of the boundary on meso-
scopic superconductors with dimensions comparable to the
penetration depth � or the coherence length � has been
intensively studied [1–8]. In an applied magnetic field, it
was found that the vortex states strongly depend on the size
and geometry of the sample and are generally different from
the Abrikosov triangular lattice observed in bulk type-II
conventional superconductors (where only the vortex–vortex
interaction plays a role). For example, a giant vortex induced
by strong boundary confinement was predicted [2] as the
ground state in disks which was subsequently observed
experimentally [9,10]. In square samples, a peculiar state
with an antivortex at the center surrounded by four vortices
was predicted theoretically [11,12], but never observed
experimentally up to now.

All of the above theoretical works are based on the
Ginzburg–Landau (GL) theory. When the superconductor
is downscaled to nanometer sizes, quantum confinement
[13] leads to unique phenomena, especially in samples with
dimensions of the order of the Fermiwave length�F. TheGL
theory is no longer applicable in this regime and the micro-
scopic Bogoliubov–de Gennes (BdG) formalism is required.
The discretization of the energy levels around the Fermi level
EF was shown to induce quantum-size effect [14,15],
quantum-size cascades [16], and the shell effect [17]. As
one of the important results, Ref. [15] reported the wavelike
inhomogeneous spatial distribution of the order parameter,
further enhanced at the boundary due to quantum confine-
ment. The latter is important because it is well known that
vortices tend to migrate and be pinned in areas where super-
conductivity is suppressed [18], i.e., it is energetically favor-
able for a vortex to suppress the superconducting order
parameter in the region where it is already weak. In reality,
the behavior is much more complex and in some instances
the vortex can be pinned where the gap is large [19]. The
appearance of oscillations in the order parameter profile due
to quantum confinement is thus expected to influence the

vortex states. For conventional superconductors, kF�0 � 103

(kF is the Fermi wave vector and �0 is the BCS coherence
length), systems of size comparable to �F will not be large
enough to host a vortex (being much smaller than the coher-
ence length). However, materials with small coherence
lengths, e.g., high-Tc cuprate superconductors, will have
kF�0 � 1–4 and therefore in such systems it is possible to
obtain vortex states in the quantum confinement regime.
Another such system is a graphene flake deposited on top
of a superconductor. Because of the proximity effect, super-
conducting correlations will diffuse in graphene [20–23].
Such a system is in the clean limit because the scattering
length in graphene is large. More importantly, in graphene,
near the Dirac point, the Fermi wavelength is very large and
can be easily manipulated by doping. In other words, kF�0

can be tuned, whichwill allow for different vortex patterns to
be realized in the graphene flake in the quantum confinement
regime, but formore accessible sample sizes (above 100nm).
In order to experimentally detect vortex states in nano-

sized superconductors, one can extract information about
the local density of states (LDOS) frommeasurements of the
differential conductance with scanning tunneling micros-
copy [10,24,25]. An extensive analysis of the LDOS profile
of the vortex states has been performed in the past [26–30].
It is generally known that the bound states in the vortex core
lead to peaks in the LDOS at energies below the super-
conducting gap, though the exact formation of peaks in the
spectrum of a multiple flux line (giant vortex) will depend
on the vorticity [31]. Also, when kF�0 is small, the spectrum
becomes particle-hole asymmetric and the lowest vortex
bound state has a finite energy [26]. In the quantum confine-
ment regime, there exist strong vortex–vortex and vortex–
boundary interactions and the quasiparticle spectrum
becomes much more complicated. In this case, the lowest
bound state peak position does not generally coincide with
the vortex core [32]. Furthermore, in case of strong interac-
tions, vortex and surface bound states may combine to form
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a complex state where LDOS contributions of individual
constituents are not clearly visible.

In this Letter, we report novel vortex states that appear
from the interplay between quantum confinement, inho-
mogeneous superconductivity, an external magnetic field,
and the sample geometry, in a nano-sized superconducting
square. We performed calculations for a sample in the
quantum limit by solving BdG equations self-consistently.
In what follows, we keep constant the size of the sample
and the bulk coherence length �0 ¼ @vF=��0 (where vF is
the Fermi velocity and �0 is the order parameter at zero
temperature), while we change the parameter kF�0 and
thereby tune the influence of the confinement on the vortex
structure. We start from the well-known BdG equations:

½K0 � EF�unð ~rÞ þ�ð~rÞvnð~rÞ ¼ Enunð ~rÞ; (1)

�ð ~rÞ�unð~rÞ � ½K�
0 � EF�vnð ~rÞ ¼ Envnð ~rÞ; (2)

where K0 ¼ ði@rþ e ~A=cÞ2=2m is the kinetic energy and
EF is the Fermi energy, un(vn) are electron- (hole) like
quasiparticle eigen wave functions,En are the quasiparticle

eigen energies, and ~A is the vector potential (we use the

gauge r � ~A ¼ 0).
The pair potential is determined self-consistently from

the eigen wave functions and eigen energies:

�ð~rÞ ¼ g
X

En<Ec

unð ~rÞv�
nð ~rÞ½1� 2fn�; (3)

where g is the coupling constant, Ec is the cutoff energy,
and fn ¼ ½1þ expðEn=kBTÞ��1 is the Fermi distribution
function, where T is the temperature. We consider the two-
dimensional problem and assume a circular Fermi surface.
The confinement imposes Dirichlet boundary conditions
[i.e., unð ~rÞ ¼ 0, vnð ~rÞ ¼ 0, r 2 @S] such that the order
parameter vanishes at the surface. In an extreme type-II
superconductor (and/or very thin sample), it is reasonable
to neglect the contribution of the supercurrent to the total
magnetic field. For such a case, we discretize Eqs. (1)–(3)
and by using the finite difference method we solve them
self-consistently.

The free energy [33,34] of the system is then calculated
as:

F ¼ X

n

2Enfn þ kBT½fn lnfn þ ð1� fnÞ lnð1� fnÞ�

þ
Z

d~r

�
�2

X

n

Enjvnj2 þ 2�ð ~rÞX
n

u�nvn½1� 2fn�

� g
X

n

u�nvnð1� 2fnÞ
X

n0
un0v

�
n0 ð1� 2fn0 Þ

�
; (4)

where the spatial dependence of un and vn is implicit. The
LDOS Nðr; EÞ is calculated from

Nðr;EÞ¼�X

n

½f0ðEn�EÞjunj2þf0ðEnþEÞjvnj2�: (5)

In this Letter, we consider as an example a thin super-
conducting square with size 5�0 � 5�0. The microscopic
parameters are set to keep �0=Ec ¼ 0:2. The calculations
are done for different parameters kF�0. Because we con-
sider the zero temperature case, the system is always in the
quantum limit (where T < 1=kF�0). Figure 1 shows our
numerical results for the free energy of the found stable
vortex configurations (the states with up to five vortices
are shown) for two values of the key parameter, kF�0. The
insets show the inhomogeneous profile of the supercon-
ducting order parameter in the absence of an applied
magnetic field which is expected to strongly influence the
vortex structure. When comparing with conventional free
energy curves obtained from the GL theory [35], many
differences can be observed. First, the penetration field for
the first vortex is suppressed because the order parameter is
not homogeneous, allowing the vortex to penetrate easier at
locations where the order parameter is weakened. Second,
the stability range in flux for different vortex states (with
vorticity L) is not monotonically decreasing towards 1�0

as L increases. Moreover, those stability ranges strongly
vary when kF�0 is changed. For example, for kF�0 ¼ 2
the vortex structures with even vorticity are stable over a
broader magnetic field range, while for kF�0 ¼ 3 surpris-
ingly the structures with odd vorticity are the favored ones.
The main reason behind this phenomenon is that different
confinement-induced oscillations in the order parameter
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FIG. 1 (color online). Free energy as a function of the magnetic
flux through the square sample, for (a) kF�0 ¼ 2 and (b) kF�0 ¼ 3.
Here, F0 ¼ @

2=2m�2
0. The insets show the contour plots of

the order parameter with the diagonal profiles in the absence of
applied magnetic field.

PRL 109, 107001 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

7 SEPTEMBER 2012

107001-2



for different kF�0 value will stabilize different symmetries
of the vortex pattern. To illustrate this effect better, we plot
in Fig. 2 the applied magnetic flux at which ground state
transitions between states with consecutive vorticities
occur, as a function of kF�0. Notice the varying ranges of
stability of different vortex states, which are very sensitive
to kF�0. Of course, for large kF�0 the behavior of the
system converges to a more conventional picture (with
each new vortex entering the system with roughly one
flux-quantum added).

To underpin the reasons for this varying stability of vortex
states in what is otherwise a rather simple, square system,
we show in Fig. 3 some of the typical states for the case of
kF�0 ¼ 2 (the order parameter, its phase, and corresponding
LDOS). As elaborated above, the quantum confinement of
electrons here strongly affects the spatial distribution of the
order parameter [see inset in Fig. 1(a)], having three o
scillations across the square and four distinct minima that
enhance the fourfold symmetry. This automatically leads to

the improved stability of states with even vorticity, similar to
the case of a square with four antidots [36]. We also observe
that, before ceasing at the boundary, the order parameter is
enhanced near the surface, with the highest value found near
the corners. Because of the effect of the boundary and the
shape resonances, the order parameter is also enhanced at
the center of the square. To reiterate a fairly obvious point,
vortices are repelled by the peak positions of the super-
conducting pair amplitude, and the four low amplitude
locations (with value only 2=3 of the peaks) will pin vortices
rather strongly. Figures 3(a)–3(c), show the L ¼ 1 ground
state for applied flux �=�0 ¼ 4. Surprisingly, we find that
the only vortex in this state is actually sitting in one of the
minima of the order parameter and the fourfold symmetry is
broken. We emphasize that this state is not possible within
the GL formalism where the single vortex will always sit in
the center of the square.
From an experimental point of view, in the absence of

any reference energy, the zero-bias LDOS is most relevant.
Here instead we will show the LDOS for the lowest energy
vortex bound state, which for an isolated vortex could be
found from a simple empirical formula Elow=� ¼
ð2kF�0Þ�1 lnð3:33kF�0Þ [26]. Therefore, for the L ¼ 1 state
we plot the LDOS at E=F0 ¼ 0:57 [Fig. 3(c)]. Note that
this lowest vortex bound state is not localized in the vortex
core but is shifted towards the center of the square. We
attribute this to the interactions of the quasiparticles not
only with the four deepest minima of the inhomogeneous
order parameter but also with the edges and the corners—
where the order parameter is also suppressed [see inset of
Fig. 1(a)]. The effect of this interaction can also be inferred
from the finite LDOS at the corner of the sample, next to
the vortex.
When increasing the magnetic field further, an addi-

tional vortex enters the system (forming L ¼ 2 state) and
another unexpected spatial distribution is stabilized. We
illustrate this in Figs. 3(d)–3(f) for applied flux�=�0 ¼ 6.
The confinement seems to act strongly and vortices are
compressed closer to each other. However, the enhance-
ment of the order parameter in the center of the sample due
to quantum resonance prevents the two vortices from
merging. As a consequence, vortices are squeezed into
elliptical shapes, as a pair parallel to one of the sample
edges. This vortex configuration is as different as one can
be from the known GL results, where the two vortices are
always found sitting on the diagonal, or merged into a giant
vortex, and have always an almost circular core. The
LDOS plot [Fig. 3(f)] again reveals strong competing
interactions, different from those acting on vortices. For
example, we see evidence of the interaction of bound states
inside the vortex cores, because the maximum in the LDOS
is reached between the vortices and not at the center of
each vortex. Also, the vortex—surface interaction of the
bound states is enhanced, leading to LDOS being clearly
appreciable near the surface.
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FIG. 2 (color online). Transition fluxes in units of �0 between
ground states with consecutive vorticities for different kF�0.
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To check further the influence of the length scales in our
sample, we also calculated the vortex states for kF�0 ¼ 3.
In this case, the inset of Fig. 1(b) shows six local maxima
along the diagonal, twice as many as in the kF�0 ¼ 2 case.
There are also strong oscillations near the corners but
relatively flatter away from the boundary. Again, as
expected, the fourfold symmetry is maintained, but now
there are no strong minima in the fourfold arrangement
deep inside the sample. For that reason, for�=�0 ¼ 3, the
L ¼ 1 ground state is conventional and contains one vortex
at the center of the square. For�=�0 ¼ 5:8, theL ¼ 2 state
is the ground state and although it still shows the vortex pair
parallel to the side of the square, the shape of the vortices
and the location of the lowest bound state LDOS peaks bring
it closer to the conventional picture [37].

However, when the flux through the square is increased
to�=�0 ¼ 7, as shown in Figs. 4(a)–4(c), the ground state
has vorticity L ¼ 3 and is not conventional. We in fact
find the vortex–antivortex (v–av) molecule, similar to the
symmetry-induced ones predicted by the GL theory
[11,12] (four vortices with an antivortex in between, so
that the total vorticity is L ¼ 4� 1). There the size of the
v–av molecule was found to be very small, possibly larger
if artificial pinning centers are introduced [12,38]. In the
present case, the v–av molecule is stable over a wide range
of fields because of the symmetry of the oscillatory pattern
of the order parameter due to the quantum confinement.
The LDOS at E=F0 ¼ 0:57, shown in Fig. 4(c), reveals
again that because the vortices are located closer together,
the bound states are not localized in the cores but are
extended over the whole square.

Another found difference from earlier studies is the
behavior of the L ¼ 4 state for kF�0 ¼ 3. As shown in
the free energy curve in Fig. 4(d), we revealed a continuous
phase transition between the configuration with the vorti-
ces located on the diagonal (at lower fields) and the con-
figuration with the four vortices sitting near the edges of
the square (higher fields), a state never found within GL.
The transition between the two fourfold symmetric states is
quite peculiar and yet unseen in mesoscopic superconduc-
tivity—it involves the appearance of v–av pairs near the
center of the square [39]. As the field is increased, the
diagonal vortices annihilate with the central antivortices,
and central vortices move to the side location. Moreover,
the L ¼ 4 configuration with side vortices becomes the
ground state for �=�0 ¼ 8:5. Because of the inhomoge-
neity of the order parameter, these vortices never merge
into a giant vortex, contrary to the known GL picture for
samples of smaller sizes.
In conclusion, we found novel vortex states with uncon-

ventional stability ranges and unconventional transition
between them in a superconducting square in the quantum
limit, where significant departures from previous works
based on the GL theory are found. Experimentally, these
states can be accessed through scanning tunneling micros-
copy measurements. Additionally, we showed that com-
peting interactions in the quantum limit for the bound
states are different from those for the vortices, so that the
conventional picture of a vortex bound to lowest energy
states does not hold. Instead we predict that the maxima in
LDOS of the lowest energy states will be observed between
vortices and near surfaces. These peculiar phenomena are
made possible by strong quantum confinement, which
induces spatial oscillations in the order parameter. Their
specific pattern depends on the ratio of �0 and �F, which is
unfavorable for oscillations in elementary superconduc-
tors, but is small enough in high-Tc materials. However,
to observe these novel states in the latter case, one should
deal with very small samples. As an alternative, we pro-
pose the study of a graphene flake in contact to a super-
conducting film, where the Fermi energy of graphene can
be tuned by a gate. In the case of graphene on Pb, our
calculations show that one could tune kF�0 in the broad
range of 0.1–10 by shifting the Fermi energy in a 400�
400 nm flake from 0.01 to 0.1 eV above the Dirac point.
Another system where effects of quantum confinement on
vortex matter can be probed systematically are the opti-
cally trapped cold gases [40], which are nowadays
extremely controllable. Further investigations will address
the rich physics in the quantum limit, and show the effects
of our findings in the 3D-confined case [41–43] and multi-
condensate samples [44], but where also barriers for vortex
motion across the oscillating landscape can be investigated
for possible use as Q bits or other vortex devices [45].
This work was supported by the Flemish Science
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