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We discuss the emergence of rings of zero-energy excitations in momentum space for superfluid phases

of ultracold fermions when spin-orbit effects, Zeeman fields, and interactions are varied. We show that

phases containing rings of nodes possess nontrivial topological invariants, and that phase transitions

between distinct topological phases belong to the Lifshitz class. Upon crossing phase boundaries, existing

massless Dirac fermions in the gapless phase annihilate to produce bulk zero-mode Majorana fermions at

phase boundaries, and then become massive Dirac fermions in the gapped phase. We characterize these

tunable topological phase transitions via several spectroscopic properties, including excitation spectrum,

spectral function, and momentum distribution.
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Ultracold atoms have now become standard laboratories
to test for existing or new theoretical ideas in atomic, con-
densed matter, nuclear, and astrophysics. The major appeal
found in these table-top experiments is the ability to tune
interactions, populations, species of atoms, and dimension-
ality—which constitute the standard toolbox for investiga-
tions of interacting bosonic or fermionic systems. Very
recently, a new tool was added to the toolbox: the ability
to tune simultaneously spin-orbit (SO) and Zeeman fields in
a system of ultracold bosonic atoms [1]. The same tool can
also be used to study ultracold fermionic atoms [1–3], and to
simulate different condensed matter systems such as topo-
logical insulators [4], noncentrosymmetric superconductors
[5], and nonequilibrium systems [6], where SO coupling of
the Rashba type [7] is encountered.

This direct connection to condensed matter physics in-
spired a new direction in ultracold fermionic atoms where
SO coupling of the Rashba type has been investigated very
recently [8–13]. However, SO fields currently realized in
experiments involving ultracold atoms correspond to an
equal superposition of Rashba [7] hRðkÞ¼vRð�kyx̂þkxŷÞ
and Dresselhaus [14] hDðkÞ ¼ vDðkyx̂þ kxŷÞ fields,

leading to the equal-Rashba-Dresselhaus (ERD) form
[1,13] hERDðkÞ ¼ vkxŷ, where vR ¼ vD ¼ v=2. Other
forms of SO fields require additional lasers and create
further experimental difficulties [15]. The current
Zeeman-SO Hamiltonian created in the laboratory is
HZSOðkÞ ¼ �hz�z � hy�y � hERDðkÞ�y for an atom

with center-of-mass momentum k and spin basis j "i, j #i.
The fields hz ¼ ��R=2, hy ¼ ��=2, and hERDðkÞ ¼ vkx
can be controlled independently, and used to explore phase
diagrams, as achieved in 87Rb experiments [1]. Here,�R is
the Raman coupling and � the detuning.

In this Letter, we describe the emergence of bulk
Majorana and Dirac particles in ultracold Fermi super-
fluids via tunable interactions, SO effects, and Zeeman
fields. Furthermore, we characterize their emergence in

three-dimensional systems through spectroscopic proper-
ties such as excitation spectrum, spectral function, and
momentum distribution.
Hamiltonian.—We start from the Hamiltonian density

H ðrÞ ¼ H 0ðrÞ þH IðrÞ, with @ ¼ 1. The single-particle
contribution is

H 0ðrÞ ¼
X
s;s0

c y
s ðrÞ½K̂1þHZSOð�irÞ�ss0c s0 ðrÞ; (1)

where K̂ ¼ �r2=2m�� and c y
s ðrÞ are the creation op-

erators for fermions with spin s located at r. The interaction

term H IðrÞ ¼ �gc y
" ðrÞc y

# ðrÞc #ðrÞc "ðrÞ is local, and g

represents the strength of the contact interaction. We define
the total number of fermions as N ¼ N" þ N#, and the

induced population imbalance as Pind ¼ ðN" � N#Þ=N.

We choose our scales through the Fermi momentum kF
defined from N=V ¼ k3F=ð3�2Þ, leading to the Fermi en-
ergy �F ¼ k2F=2m and Fermi velocity vF ¼ kF=m.
We focus on the zero-detuning case � ¼ 0 (hy ¼ 0), use

the basis jk; si � c y
s ðkÞj0i, where j0i is the vacuum state,

and write H 0ðrÞ in momentum space as the matrix
H0ðkÞ ¼ KðkÞ1� hz�z � hERDðkÞ�y, where KðkÞ ¼
k2=2m��. The interaction Hamiltonian H IðrÞ can also
be converted into momentum space as H IðqÞ ¼
�gbyðqÞbðqÞ, where the pair creation operator byðqÞ ¼P

kc
y
" ðkþÞc y

# ðk�Þ with k� ¼ �kþ q=2 and g can be

expressed in terms of the scattering length as through
V=g ¼ �Vm=ð4�asÞ þ

P
k1=ð2�kÞ.

Helicity basis.—The matrix H0ðkÞ can be diagonalized

in the helicity basis jk; �i � �y
�ðkÞj0i via a momentum-

dependent SU(2) rotation. The helicity spins � ¼*; + are
aligned or antialigned with respect to the effective mag-
netic field heffðkÞ ¼ hzẑþ hERDðkÞŷ. The eigenvalues
of H0ðkÞ are �*ðkÞ ¼ KðkÞ � jheffðkÞj and �+ðkÞ ¼
KðkÞ þ jheffðkÞj. The interaction Hamiltonian H IðqÞ

PRL 109, 105303 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

7 SEPTEMBER 2012

0031-9007=12=109(10)=105303(5) 105303-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.109.105303


can be written in the helicity basis as ~H IðqÞ ¼
�g

P
��	�B

y
��ðqÞB	�ðqÞ. Pairing is now described by the

operator By
��ðqÞ ¼

P
k���ðkþ;k�Þ�y

�ðkþÞ�y
�ðk�Þ and

its Hermitian conjugate. ���ðkþ;k�Þ is directly related

to the matrix elements of the momentum-dependent SU(2)
rotation into the helicity basis, and reveals that the
center-of-mass momentum kþ þ k� ¼ q and the relative
momentum kþ � k� ¼ 2k are coupled and no longer
independent.

Tensor order parameter.—From the expression of
B��ðqÞ, it is clear that pairing between fermions of

k� can occur within the same helicity band (intrahe-
licity pairing), or between two different helicity bands
(interhelicity pairing). For pairing at q ¼ 0, the order
parameter (OP) for superfluidity is the tensor ���ðkÞ ¼
�0���ðk;�kÞ, where �0 ¼ �g

P
	�hB	�ð0Þi, leading to

components �**ðkÞ ¼ i�TðkÞsgnðkxÞ ¼ ��++ðkÞ for he-
licity projection 
 ¼ �1 and �*+ðkÞ ¼ ��SðkÞ ¼
��+*ðkÞ for helicity projection 
 ¼ 0. The amplitudes

�TðkÞ ¼ �0jhERDðkÞj=jheffðkÞj and �SðkÞ ¼
�0hz=jheffðkÞj reflect the triplet and singlet components
of the OP in the helicity basis, respectively. The Bloch-
sphere relation j�TðkÞj2 þ j�SðkÞj2 ¼ j�0j2 shows that
the singlet and triplet channels in the helicity basis are
not independent.

Higher angular momentum pairing.—In the triplet
terms, �**ðkÞ and �++ðkÞ contain not only p-wave, but
also f-wave and higher odd partial waves, as seen from a

multipole expansion of jheffðkÞj�1 ¼ ½h2z þ h2ERDðkÞ��1=2

for finite hz. Similarly, in the singlet sector, �*+ðkÞ and
�+*ðkÞ contain s-wave, d-wave, and higher even partial

waves, as long as hz is nonzero. Higher angular momentum
pairing occurs because the local (zero ranged) interaction
in the ( " , # ) spin basis is transformed into a finite-ranged
anisotropic interaction in the helicity basis ( * , + ).

Excitation spectrum.—The effective Hamiltonian in the
helicity basis takes the matrix form

~HspðkÞ ¼

�*ðkÞ 0 �**ðkÞ �*+ðkÞ
0 �+ðkÞ �+*ðkÞ �++ðkÞ

��
**ðkÞ ��

+*ðkÞ ��*ðkÞ 0

��
*+ðkÞ ��

++ðkÞ 0 ��+ðkÞ

0
BBBBB@

1
CCCCCA
: (2)

The eigenvalues for the highest and the lowest

quasiparticle bands are Ep
�ðkÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðjheffðkÞj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2ðkÞ þ j�SðkÞj2

p Þ2 þ j�TðkÞj2
q

, while the

eigenvalues for the quasihole bands are Eh�ðkÞ ¼ �Ep
�ðkÞ.

Note that Ep
þðkÞ> Ep�ðkÞ � 0, and only Ep�ðkÞ can have

zeros (nodal regions). The condition Ep�ðkÞ ¼ 0 corre-
sponds physically to the equality between the effective
magnetic field energy jheffðkÞj and excitation energy for

the singlet component
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2ðkÞ þ j�SðkÞj2

p
and the vanish-

ing of the triplet component of the OP �TðkÞ.

Phase diagram.—Since only Ep�ðkÞ can have zeros, the-
low energy physics is dominated by this eigenvalue. In the
ERD case, where jhERDðkÞj ¼ vjkxj, zeros can occur in
Ep�ðkÞwhen kx ¼ 0, leading to the following cases: (a) two
possible lines (rings) of nodes when h2z � j�0j2 > 0; (b) a
doubly degenerate line of nodes for �> 0, a doubly de-
generate point nodes for � ¼ 0, or no line of nodes for
�< 0when h2z � j�0j2 ¼ 0; and (c) no line of nodes when
h2z � j�0j2 < 0. In addition, case (a) can be refined into
cases (a2), (a1), and (a0). In case of (a2), two rings indeed

exist, provided that �>
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2z � j�0j2

q
. However, the inner

ring disappears when � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2z � j�0j2

q
. In case of (a1),

there is only one ring when j�j<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2z � j�0j2

q
. In case of

(a0), the outer ring disappears at � ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2z � j�0j2

q
, and

for �<�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2z � j�0j2

q
no rings exist.

To obtain the phase diagram, we self-consistently solve the
OP @�sp=@j�0j2 ¼ 0 and number N ¼ �ð@�sp=@�ÞT;V
equations, where �sp ¼ �T lnðTr expð� ~Hsp=TÞÞ þ
Vj�0j2=gþP

kKð�kÞ is the thermodynamic potential
(see Supplemental Material [16]).
In Fig. 1, we show the zero temperature (T ¼ 0) phase

diagrams of hz=�F versus 1=ðkFasÞ as well as Pind versus
1=ðkFasÞ for v=vF ¼ 0 and v=vF ¼ 0:28. We label the
uniform superfluid phases with zero, one, or two rings of
nodes as US-0, US-1, and US-2, respectively. Nonuniform
(NU) phases emerge in regions where the uniform phases

FIG. 1 (color online). Phase diagrams of hz=�F and Pind versus
1=ðkFasÞ for ERD coupling v=vF ¼ 0 (a), (b); and for ERD
coupling v=vF ¼ 0:28 (c), (d). Uniform superfluid phases are
labeled as US-0 (gapped, either directly or indirectly), US-1
(gapless with one ring of nodes), and US-2 (gapless with two
rings of nodes). The NU label describes the region where
uniform superfluids are unstable.
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are thermodynamically unstable (see Supplemental
Material [16]). The possible NU phases include phase
separation, modulated superfluids, or supersolids. The
phase boundary between US-2 and US-1 is determined

by the condition � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2z � j�0j2

q
, when jhzj> j�0j; the

US-0 or US-2 boundary is determined by the Clogston-like
condition jhzj ¼ j�0jwhen�> 0, where the gapped US-0
phase disappears leading to the gapless US-2 phase; and
the phase boundary between US-0 and US-1 is determined

by � ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2z � j�0j2

q
, when jhzj> j�0j. Furthermore,

within the US-0 boundaries, a crossover between an indi-
rectly gapped and a directly gapped phase occurs at� ¼ 0.

Note that for finite SO coupling v, it is always possible
to form pairs in the lower helicity band �*ðkÞ, no matter

how large hz is, because an induced triplet component of
the OP emerges and circumvents the standard pair—break-
ing Clogston limit for singlet pairing. The stable superfluid
phase for a large hz at T ¼ 0 is the US-1 phase, as shown in
Fig. 1 (see also Supplemental Material [16]).

Dirac and Majorana fermions.—Changes in nodal struc-
tures of excitation spectrum or the OP are associated with
bulk topological phase transitions of the Lifshitz class, as
noted for p-wave [17,18] and d-wave [19,20] superfluids.
Such transitions are possible here because SO and Zeeman
fields induce higher angular momentum pairing in the
helicity basis. In the US-1 and US-2 phases near the zeros
of Ep�ðkÞ, quasiparticles have linear dispersion and behave
as Dirac fermions. The disappearance of nodal regions
(rings) corresponds to annihilation of Dirac quasiparticles
with opposite momenta. The transition from phase US-2 to
indirect-gap i-US-0 occurs through the merger of the two
rings at the phase boundary, followed by the immediate
opening of the indirect gap at finite momentum. However,
the transition from phase US-2 to US-1 corresponds to the
disappearance of the inner ring through the origin of mo-
menta ðk ¼ 0Þ, and the transition from phase US-1 to the
direct-gap d-US-0 corresponds to the disappearance of the
last ring, also through the origin of momenta.

The last two phase transitions (between US-2 and US-1,
and between US-1 and d-US-0) are special, because the
zero-momentum quasiparticles at these phase boundaries
correspond to Majorana zero energy modes if the

phase ’ðkÞ of the SO field hERDðkÞ ¼ jhERDðkÞjei’ðkÞ,
where ’ðkÞ ¼ sgnðkxÞ�=2, and the phase �ðkÞ of the OP

�0 ¼ j�0jei�ðkÞ satisfy the relation at zero momentum:
’ð0Þ ¼ ��ð0Þ½modð2�Þ�. This can be seen from an analy-

sis of the eigenfunctions �iðkÞ ¼ Ui1;kc k" þUi2;kc k# þ
Ui3;kc

y
�k" þUi4;kc

y
�k#, corresponding to the eigenvalue

Ep;h� ðkÞ, where Uij;k ¼ UijðkÞ are the elements of the uni-

tary matrix UðkÞ that diagonalizes the Hamiltonian ~HspðkÞ.
The emergence of zero-energy Majorana fermions requires
the quasiparticle (quasihole) to be its own antiquasiparticle

(antiquasihole): �y
i ðkÞ ¼ �iðkÞ. This happens at zero

momentum k ¼ 0, where the amplitudes Ui1;0 ¼ U�
i3;0

and Ui2;0 ¼ U�
i4;0, leading to the conditions �2 ¼

h2z � j�0j2 and ’ð0Þ ¼ ��ð0Þ½modð2�Þ�. This shows that
Majorana fermions exist only at the phase boundaries be-
tween US-1 and US-0 and between US-2 and US-1. In
Fig. 2, we show the Lifshitz transition from US-1 to US-0
phase, where nodal (massless) Dirac fermions in the US-1
phase become bulk zero-mode Majorana fermions at the
phase boundary between US-1 and US-0, and then become
massive Dirac fermions in the US-0 phase.
It is important to emphasize that the Majorana fermions

found here are not the zero-energy Andreev bound states
supposed to exist in junctions between one-dimensional
quantumwires [21,22], and are not related to the zero-energy
bound states expected to exist inside the vortex cores ofpx þ
ipy superfluids. The Majorana states found here are present

in the bulk andare unbound zero-energy states,which happen
to have zero momentum. Our Majorana mode can be ex-
pressed in terms of a linear combination of plane-wave states,
as defined by the operator�iðkÞ. Such self-adjoint states are
much closer to those originally envisioned byMajorana, and
the work performed here (with small modifications) opens a
path for finding finite-momentum bulk Majorana quasipar-
ticles. The only commonality between the bulk (unbound)
Majorana fermions found here and the bound-stateMajorana
fermions corresponding to zero-energyAndreev bound states
found in junctions of topological superconductors is that both
exist at boundaries: bulk Majorana zero-energy modes may
exist at the phase boundaries between two topologically
distinct superfluid phases, while bound-state Majorana
zero-energymodesmay exist at the spatial boundaries (junc-
tions) between topologically nontrivial superconductors (see
Supplemental Material [16]).
Lifshitz transition.—Transitions between different

superfluid phases occur without a change in the symmetry
of the OP tensor ���ðkÞ in the helicity basis, and thus

violate the symmetry-based Landau classification of

FIG. 2 (color online). Excitation spectra EiðkÞ in the (kx ¼ 0,
ky, kz) plane illustrating the Lifshitz transition: the shrinkage of

(a) Dirac rings (US-1 phase) into (b) Majorana zero-energy
modes (phase boundary between US-1 and US-0) and (c) the
emergence of massive Dirac fermions (direct-gap d-US-0 phase).
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phase transitions. However, a finer classification based on
topological charges can be made via the construction of
topological invariants [17,23]. The number of rings ‘
corresponds to the topological charge associated with the
surfaces of zero-energy quasiparticle excitations. Thus, for
the US-0 phase ‘ ¼ 0, while for the US-1 and US-2 phases,
‘ ¼ 1 and ‘ ¼ 2, respectively.

Spectral function.—An important measurable quantity is
the single-particle spectral density [24] Asð!;kÞ ¼
�ð1=�ÞImGssði! ¼ !þ i�;kÞ for spin s ¼" , # , where
Gði!;kÞ ¼ ði!1� ~HspðkÞÞ�1. The existence of rings of

zero-energy excitations for the US-1 and US-2 phases is
revealed by the function Asð! ¼ 0; kx ¼ 0; ky; kzÞ. In

Fig. 3, the spectral densities for the US-1 phase are shown
in the left panels (a) and (d). The ring for spin " (a) is
brighter than the ring for spin # (d), since Pind > 0. In the
middle panels (b) and (e),Asð! ¼ 0; kx ¼ 0; ky; kzÞ at the
phase boundary between US-1 and US-0 is shown reveal-
ing the Majorana zero-energy mode. In the right panels (c)
and (f), the spectral densities for the US-0 phase is zero at
! ¼ 0, since this phase is fully gapped.

Momentum distribution.—A spectroscopic quantity that
is routinely measured is the momentum distribution
nsðkÞ ¼ T

P
i!Gssði!;kÞ for spin s ¼"; # . Since nsðkÞ

depends only on the energy spectrum Ep;h
� ðkÞ and its

derivatives, it is an even function of momentum k
(Fig. 4). It is very important to note the discontinuity of
nsðkÞ at the location of the ring of zero-energy excitations
in the US-1 phase (top panels), its change in behavior as
bulk Majorana fermions emerge at k ¼ 0 (middle panels),
and the transition to a direct-gap d-US-0 phase (bottom
panels), where the ring of the nodes has disappeared,
leading to smooth momentum distributions nsðkÞ.

Trap effects.—Since we are dealing with ERD SO cou-
pling, no angularmomentum is injected into the system, and

therefore the spontaneous emergence of vortices as in the
case ofBose systemswithRashba-only orDresselhaus-only
SO coupling [25] does not occur. Therefore, vortex states
due to the interplay of time-reversal symmetry breaking, SO
coupling, and the trapping potential are not expected in the
ERD case. However, an interesting effect due to the pres-
ence of the trapping potential is the coexistence of various
superfluid regions. Since the system is inhomogeneous in a
trap, the bulk Majorana states become now interface
states. For instance, in the case of the phase boundary
between US-2 and US-1, the Majorana states now occur

when �ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2z � j�0ðrÞj2

q
, within the local density

approximation �ðrÞ¼��VtrðrÞ (see Supplemental
Material [16]), and define a spherical shell when the
trapping potential VtrðrÞ is harmonic and spherically
symmetric.
Summary.—We showed that the presence of simulta-

neous Zeeman and SO fields induces higher angular mo-
mentum pairing in the helicity basis. We have also
identified topological phase transitions of the Lifshitz class
via the existence of rings of nodes in the excitation spectra,
Dirac quasiparticles, bulk Majorana zero-energy modes,
and topological charges. Lastly, we characterized different
topological phases and the emergence of bulk Majorana
and Dirac fermions via experimentally measurable quan-
tities such as the excitation spectrum, spectral function,
and momentum distribution.
We thank ARO (W911NF-09-1-0220) for support.

FIG. 3 (color online). The zero-energy spectral density
Asð! ¼ 0; kx ¼ 0; ky; kzÞ at 1=ðkFasÞ ¼ 1:0 and v=vF ¼ 0:28

is shown in (a) and (d) for the US-1 phase with hz=�F ¼ 1:75, in
(b) and (e) for the phase boundary between US-1 and US-0 with
hz=�F ¼ 1:59, and in (c) and (f) for the direct-gap d-US-0 phase
with hz=�F ¼ 1:44. The top panels (a), (b), and (c) show A",
while the bottom panels (d), (e), and (f) show A#. FIG. 4 (color online). Momentum distribution nsðkÞ for

1=ðkFasÞ ¼ 1:0 and v=vF ¼ 0:28 at the US-1 phase with
hz=�F ¼ 1:75 (top panels), at the US-1/US-0 phase boundary
with hz=�F ¼ 1:59 (middle panels), and at the US-0
phase with hz=�F ¼ 1:44 (lower panels). The leftmost (right-
most) panels show the momentum distribution for spin
" ( # ) at kz¼0 versus ky (solid-blue line) and versus kx
(dotted-red line).
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