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By quenching the strength of interactions in a partially condensed Bose gas, we create a ‘‘super-

saturated’’ vapor which has more thermal atoms than it can contain in equilibrium. Subsequently, the

number of condensed atoms (N0) grows even though the temperature (T) rises and the total atom number

decays. We show that the nonequilibrium evolution of the system is isoenergetic and, for small initial N0,

observe a clear separation between T and N0 dynamics, thus explicitly demonstrating the theoretically

expected ‘‘two-step’’ picture of condensate growth. For increasing initial N0 values, we observe a

crossover to classical relaxation dynamics. The size of the observed quench-induced effects can be

explained using a simple equation of state for an interacting harmonically trapped atomic gas.
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The nonequilibrium dynamics of interacting quantum
systems is generally far less understood than the corre-
sponding equilibrium many-body states [1]. Of particular
interest is the many-body dynamics of both the order
parameter and the excitations in a system close to a phase
transition. From a theoretical point of view, a clean and
well defined way to induce and study nonequilibrium
quantum dynamics is a rapid ‘‘quantum quench’’ [2] of a
single Hamiltonian parameter. Ultracold atomic gases are
very well suited for such quantum quench experiments. In
addition to the possibility to dynamically vary microscopic
Hamiltonian parameters, they feature near-perfect isola-
tion from the environment and characteristic many-body
time scales (ranging from ms to s) that are experimentally
resolvable and allow real-time nonequilibrium studies.

In this Letter, we introduce a quantum quench of the
interaction strength in an atomic Bose gas as a tool to study
the dynamics of Bose-Einstein condensation [3–15].
Earlier experiments highlighted the importance of bosonic
stimulation in condensate formation [10], but could not
quantitatively address the theoretically debated interplay
of thermal energy redistribution and condensate develop-
ment [3–9]. The use of a quantum quench of the interaction
strength allows us to study these two processes in parallel.
The quench induces a growth of the condensed atom
number in a degenerate gas without any removal of thermal
energy; we explain this effect with a simple theoretical
model and experimentally study its real-time dynamics.
We explicitly show that the post-quench nonequilibrium
evolution of the system is isoenergetic, and directly reveal
the theoretically postulated ‘‘two-step’’ picture of con-
densation [4–7]. As expected, close to the critical point
the growth of the condensed atom number lags behind the
energy redistribution in the thermal component of the gas.
Moving away from the critical point, we also observe a
crossover to effectively one-step condensation dynamics
governed by a classical relaxation process.

In an ideal Bose gas the number of condensed atoms,N0,
depends only on the total atom number N and the tempera-
ture T. In a partially condensed cloud at a given T the
number of atoms in the thermal component,N0, is saturated
at the critical value for condensation, NcðTÞ, and we have
N0 ¼ N � Nc. In experiments on harmonically trapped
atomic gases the interactions, characterized by the
s-wave scattering length a, change this picture in two
ways (see Fig. 1). First, they induce a shift of the critical
value Ncða; TÞ, which was accurately measured in
Ref. [16]. Second, the thermal component is not satu-
rated—the presence of the condensate allows N0 to grow
above Nc [17]. Taking these effects into account, near the
critical point we can write the equation of state for an
interacting atomic gas in thermal equilibrium [18]:

N ¼ Nc þ S0N
2=5
0 þ N0: (1)

FIG. 1 (color online). Inducing nonequilibrium dynamics by a
quantum quench of the interaction strength. The equilibrium
condensed atom number N0, calculated according to Eq. (1), is
plotted versus the total atom number N for a fixed temperature
T ¼ 200 nK, our trapping parameters, and different scattering
lengths a. The arrow indicates the direction of the quench. The
three absorption images of atomic clouds released from the trap
show the growth of the condensate (central dark red spot) over
� 1 s following an a ¼ 275 ! 62a0 quench.
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Here S0N
2=5
0 is the additional number of atoms accommo-

dated in the thermal component due to non-saturation

effects, i.e., N0 ¼ Nc þ S0N
2=5
0 . The nonsaturation coeffi-

cient S0 / a2=5T2 can be calculated using mean-field the-
ory [17,18]. (In our experiments S0 � 103.)

As illustrated in Fig. 1, the fact that the equilibrium
number of condensed atoms (at a fixed N and T) depends
on the strength of interactions opens the possibility to use a
quantum quench of the scattering length to induce nonequi-
librium N0 dynamics. Here we plot the solutions of Eq. (1)
for a fixed T and different scattering lengths a, where a0 is
the Bohr radius. If the system is prepared in equilibrium at a
high scattering length and then a is quenched to a lower
value the gas becomes supersaturated, having too large N0
and too smallN0. ConsequentlyN0 must grow even without
any active cooling of the gas. Compared to the classical
quench of the thermal energy [10–14], the quantum quench
of a has the advantage that it does not directly affect N and
the initial thermal occupations of the single-particle excited
states. This allows us to study in parallel the induced
nonequilibrium evolution of both the condensate and the
quasithermal energy distribution in the system.

For our experiments we use an optically trapped cloud
of 39K atoms in the jF;mFi ¼ j1; 1i hyperfine ground state
[19], in which a can be tuned via a Feshbach resonance
centred at 402.5 G [20]. The geometric mean of the
harmonic trapping frequencies in our nearly isotropic
trap is �!=2� � 75 Hz, the temperature of our clouds is
T � 200 nK, and the total atom number N � ð3–4Þ � 105.

We initially prepare an equilibrium cloud just below the
condensation temperature at a scattering length ai ¼ 275a0
and then rapidly quench the scattering length to a lower final
value, af, by changing the externally applied magnetic field
over �q ¼ 10 ms. After the quench we follow the evolution

of the system for times up to t ¼ 10 s, extracting N0, N and
T from absorption images taken after 18ms of time-of-flight
(TOF) expansion from the trap [21]. An example of such a
data series, with af ¼ 62a0 and an initial condensate atom
number Ni

0 � 4� 103, is shown in Fig. 2. We collected a

total of 20 such experimental series, each with a different
combination of af in the range 52–97a0 and N

i
0 in the range

ð1–40Þ � 103.
The quench time �q and the af values simultaneously

satisfy several requirements. (i) Even for fixed N0, the
spatial size of the condensate depends on a. Our �q is

sufficiently long compared to the trap time ( �!�q � 5) to

allow adiabatic adjustment of the condensate shape at the
initial N0 [22]. (ii) At the same time the quench must be
diabatic with respect to the exchange of particles between
the thermal cloud and the condensate, so we choose af

values small enough for the elastic collision rate �el [23] to
be much smaller than 1=�q. (iii) The af values are large

enough for the system to converge towards new equilib-
rium at long times, rather than forever remaining in an
intrinsically nonequilibrium state [16,18].

As shown in Fig. 2, the number of condensed atoms N0

clearly grows following the quench, before eventually
decaying at much longer times due to the mundane reasons
of slow N decay and a background heating rate of about
1 nK=s [24]. Since at short times N0 grows while N decays
and T rises, this increase in the number of condensed atoms
is unambiguously an interaction effect. Interestingly, the
temperature also shows a fast initial rise which is clearly
associated with the interaction quench.
In order to quantitatively study the nonequilibrium ef-

fects that occur on short time scales (& 1 s) after the
quench, we need to eliminate from our analysis the long-
term (quasistatic) drifts of N and T. Specifically, we need

to experimentally extract the ‘‘target’’ final values Nf
0 and

Tf that the system would tend to in absence of the slow
background heating and atom number decay (see dashed
red lines in Fig. 2). The target temperature Tf is simply
determined by subtracting the constant background heating
rate, i.e., fitting a constant slope to the long-time data. The

extraction of Nf
0 is a bit more subtle. A simple linear fit of

FIG. 2 (color online). Nonequilibrium dynamics following an
interaction quench from ai ¼ 275a0 to af ¼ 62a0. The con-
densed atom number N0, total atom number N, and temperature
T are plotted versus the time t after the quench. Each data point
is an average of 3–7 experimental shots and the error bars are
statistical. N0 first grows towards the new equilibrium and then
slowly decays due to the slow N decay and a small background
heating rate of � 1 nK=s. The N decay has a characteristic time
scale of �100 s and is essentially linear over 10 s. In addition to
the constant background heating rate, the temperature shows a
fast initial rise induced by the quench. The inset shows the

evolution of N2=5
0 , which decays linearly at long t. The dashed

red lines show fits to the long-t data, used to extract Nf
0 and Tf

(see text).
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N0 versus t (at long times) is not completely correct and
generally underestimates the time at which the BEC dies.
For example, in Fig. 2 such a fit would predict the conden-
sate to die at � 7:5 s, whereas it unambiguously survives
for t > 10 s. At our level of measurement precision [16],
this corresponds to a 3� error in the location of the critical
point. To correctly model the long-time behavior, we note
that the slow linear decay ofN and rise of T both to leading
order correspond to a linear decrease of N � Nc with time.

Further, for small condensates, the S0N
2=5
0 term in Eq. (1) is

significantly larger than N0. Hence, at long times N2=5
0

decays linearly, allowing us to extract ðNf
0 Þ2=5 by linear

extrapolation to t ¼ 0.
We qualitatively anticipated the quench-induced growth

ofN0 by solving Eq. (1) under the constraint of fixed T (see
Fig. 1). However, we can also understand why the quench
must lead to an increase in the temperature of the cloud.
For our experimental parameters the average energy of
thermal atoms is approximately 3kBT � h� 13 kHz,
while the energy of the condensed atoms (including ki-
netic, potential, and interaction energy at af) is less than
h� 1 kHz. Therefore, during the nonequilibrium evolu-
tion of the system after the quench, the atoms moving from
the thermal cloud into the condensate take with them much
less than ‘‘their share’’ of energy. Hence, an isothermal
nonequilibrium evolution would not conserve energy.
To explicitly test whether the evolution is isoenergetic,
we make a simple prediction that relates the changes

�T ¼ Tf � Ti and �N0 ¼ Nf
0 � Ni

0 under the constraint

of constant energy. In analogy with the standard models of
evaporative cooling [25,26], we get that to leading order
(for small condensed fractions) the small fractional in-
crease in T should be equal to the increase in the condensed
fraction:

�T

T
� �N0

N
: (2)

For our 20 data series with differentNi
0 and a

f values we

observe �T=Ti ¼ ð1:2� 0:3Þ�N0=N, in good agreement
with the prediction of Eq. (2). We can now also predict
�N0 for any Ni

0 and af, by numerically solving Eq. (1)

under the constraint set by Eq. (2) (see Fig. 3). As shown in
Fig. 3(b), the measured �N0 follows our theoretical pre-
dictions, although we systematically observe slightly
smaller N0 increase than predicted [27].
In Fig. 4 we compare and contrast the evolution of T and

N0 during the system’s approach to the new equilibrium,
for the same 20 data series shown in Fig. 3(b).
The temperature exhibits classical relaxation dynamics;

i.e., T exponentially approaches Tf on a time scale �T that
depends only on �el. As shown in Fig. 4(a), we find that �T
corresponds to 2.6 collisions per particle (see also, e.g.,
Ref. [29,30]). We observe no dependence of �T on Ni

0.

TheN0 dynamics is more intriguing. ForN0 to grow, two
conceptually distinct steps must take place: (1) the redis-
tribution of the kinetic energy within the gas (seen in the
T dynamics) and (2) the merging of the accumulated
low-energy atoms into the condensate. In this two-step
picture, (only) the second step depends on Ni

0 due to

FIG. 3 (color online). Isoenergetic nonequilibrium evolution.
(a) For a quench from Ti ¼ 200 nK, and ai ¼ 275a0 to af ¼
62a0, the three lines show the calculated Ni

0 (bottom, black), Nf
0

in the isoenergetic picture (middle, red) and Nf
0 in the isothermal

picture (top, blue). (b) Measured �N0, for 20 experimental series
with various Ni

0 and af values, is plotted versus the predictions

of the isoenergetic model. The liner fit to the data (solid blue
line) gives a slope of 0:9� 0:1 and an offset of ð3� 1Þ � 103.

FIG. 4 (color online). Condensation dynamics. (a) The T
dynamics agrees with the classical relaxation picture; the linear
fit (solid red line) gives a relaxation time �T ¼ ð2:6� 0:1Þ=�el.
(b) In the bosonic stimulation picture R0 / �B (see text). The

linear fit to low-R0 data gives R
ðBÞ
0 ¼ ð9� 1Þ�B (solid blue line;

the dashed blue line is the extrapolation of this fit). (c) One-
versus two-step condensation. Solid red line shows the one-step

classical relaxation prediction, RðclÞ
0 . The blue shaded area,

corresponding to the blue line in (b), shows the two-step bosonic

stimulation result, RðBÞ
0 . For increasing R0 we observe a cross-

over between the two types of dynamics. The inset shows the
same data plotted on a linear scale.
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bosonic stimulation, which enhances scattering into an
already highly occupied state. Specifically, the initial
N0 growth rate, R0 ¼ _N0ðt ¼ 0Þ, should be proportional

to �B ¼ Ni
0�el��=ðkBTÞ, where ��� a2=5f �ðN2=5

0 Þ is

the difference between the initial and final chemical
potentials [8–10].

However, the two-step picture is experimentally rele-
vant only if the second step is the slower, ‘‘rate limiting
process’’, so that N0 growth lags behind the energy redis-
tribution. If the first step is the rate limiting process, and
the particles scattering to low energies essentially immedi-
ately join the condensate, then we effectively have a
one-step process, described by the classical relaxation
model. In that case we expect R0 to be simply given by

RðclÞ
0 ¼ �N0=�T � �N0�el=2:6. We qualitatively expect a

crossover from the bosonic stimulation (two-step) to the
classical relaxation (one-step) behavior as we move away
from the critical point by increasing Ni

0. In essence,

R0 should always reflect the slower of the two processes.
In Fig. 4(b) we plot R0 versus �B [31]. The low R0 data

show the expected proportionality and the linear fit (solid

blue line) gives RðBÞ
0 ¼ ð9� 1Þ�B. For large �B values, we

see a systematic downwards deviation from this fit. This is

what is expected once RðBÞ
0 exceeds the rate at which the

classical relaxation of the thermal component feeds atoms
into the low-energy states. In this regime the experimentally

observed R0 should be lower than R
ðBÞ
0 and given by RðclÞ

0 .

In Fig. 4(c), we directly compare the two-step and one-
step pictures and show the crossover between the two types
of behavior. Here we re-plot the R0 data versus �N0�el, so

that the one-step classical result, RðclÞ
0 , corresponds to the

straight line shown in red. The bosonic stimulation result,

RðBÞ
0 , is now not a universal curve, since it depends on a

different set of parameters; the blue line in Fig. 4(b) here
maps onto the blue shaded area. We now explicitly see that
the small R0 data lies systematically below the classical
relaxation prediction, as expected in the two-step picture.
However, we also see that the data is consistent with both

theories in the crossover region where RðBÞ
0 � RðclÞ

0 , and

eventually agrees better with RðclÞ
0 for the largest R0 values.

In conclusion, we have used a quantum quench of the
interaction strength to create a supersaturated nonequilib-
rium Bose gas and study its dynamics. We have shown that
the nonequilibrium evolution of the system is isoenergetic
and that the quench-induced changes in the condensed
fraction and temperature of the gas can be accounted for
using a simple equation of state for an interacting gas in
thermal equilibrium. Moreover, we directly compare and
contrast the energy-distribution and condensation dynam-
ics, and clearly resolve the two theoretically expected steps
in the condensation process. Here we focused on the case
of small but nonzero initial condensates; with this case
understood, in the future it should be possible to use a
similar quantum quench to drive the system through

the critical point. In that case, in absence of the initial
condensate ‘‘seed,’’ it should be possible to study the
stochastic effects associated with the spontaneous symme-
try breaking and initial condensate formation.
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