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We explore the anisotropic nature of Feshbach resonances in the collision between ultracold highly

magnetic submerged-shell dysprosium atoms in their energetically lowest magnetic sublevel, which can

only occur due to couplings to rotating bound states. This is in contrast to well-studied alkali-metal atom

collisions, where broadest (strongest) Feshbach resonances are hyperfine induced and due to rotationless

bound states. Our first-principle coupled-channel calculation of the collisions between these spin-

polarized bosonic dysprosium atoms reveals a strong interplay between the anisotropies in the dispersion

and magnetic dipole-dipole interaction. The former anisotropy is absent in alkali-metal and chromium

collisions. We show that both types of anisotropy significantly affect the Feshbach spectrum as a function

of an external magnetic field. Effects of the electrostatic quadrupole-quadrupole interaction are small.

Over a 20 mT magnetic field range, we predict about 10 Feshbach resonances and show that the resonance

locations depend on the dysprosium isotope.
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A strongly interacting quantum gas of highly magnetic
atoms, placed in an optical lattice, provides the opportunity
to examine strongly correlated matter, creating a platform
to explore exotic many-body phases known in solids,
quantum ferrofluids, quantum liquid crystals, and super-
solids [1,2]. Recent experimental advances [3–10] in trap-
ping and cooling magnetic atoms pave the way towards
these goals.

In general, interactions between magnetic atoms are
orientationally dependent or anisotropic. At room tempera-
ture, anisotropic interactions are much smaller than kinetic
energies and other major interactions between atoms and,
therefore, can be ignored. The situation is different for an
ultracold gas of atoms with a large magnetic moment. For
example, the anisotropy due to magnetic dipole-dipole
interactions between ultracold chromium atoms leads to
an anisotropic deformation of a Bose-Einstein condensate
(BEC) [11]. Moreover, anisotropy plays a dominant role in
collisional relaxation of ultracold atoms with large mag-
netic moments [5–7,12–15].

In this Letter, we pursue ideas for using anisotropic
magnetic and dispersion interactions to control collisions
of ultracold magnetic atoms by using Feshbach resonances
[16]. Feshbach resonances make it possible to convert a
weakly interacting gas of atoms into one that is strongly
interacting and along the way promise to make available
many of the collective many-body states mentioned above.
Alternatively, interactions can be turned off altogether to
create an ideal Fermi or Bose gas, for which thermody-
namic properties are known analytically. Feshbach reso-
nances can also be used to create BECs of weakly bound
molecules [17], which can be optically stabilized to deeply

bound molecules [18]. For fermionic atoms, the BCS-BEC
phase transition [19] and universal many-body behavior of
strongly interacting magnetic atoms can be studied via
Feshbach resonances. Finally, three-body Efimov physics
[20] can be explored.
The most promising atoms to study anisotropy in colli-

sions are submerged-shell atoms, which have an electronic
configuration with an unfilled inner shell shielded by a
closed outer shell. In particular, we are interested in the
rare-earth-metal dysprosium (Dy) atom with a 4f106s2ð5I8Þ
ground state, a total angular momentum j ¼ 8, and a large
magnetic moment of� 10�B. Its inner 4f

10 shell electrons
are spin aligned with an orbital angular momentum that is
maximal and largely unquenched. Here, �B is the Bohr
magneton. As a result, Dy’s magnetic and dispersion prop-
erties are highly anisotropic. A quantitative description of
the collision between two dysprosium atoms is challeng-
ing. For example, Ref. [15] showed that there are 153
Born-Oppenheimer (BO) potentials that dissociate to the
ground 5I8 þ 5I8 state.
We present a first-principle coupled-channel model al-

lowing us to calculate anisotropy-induced magnetic
Feshbach-resonance spectra of bosonic Dy atoms. The
model treats the Zeeman, magnetic dipole-dipole, and
isotropic and anisotropic dispersion interactions equally.
Bosonic Dy isotopes have zero nuclear spin. Thus, there is
no nuclear hyperfine structure and only Zeeman splittings
remain. The weak quadrupole-quadrupole interaction [15]
is included for completeness.
The focus of this Letter is on ultracold collisions

of atoms prepared in the energetically lowest Zeeman
state j ¼ 8 and projection m ¼ �8. Inelastic exothermic
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atom-atom processes, where the spin projection of one or
both of the atoms changes, are absent, and consequently,
Feshbach resonances can be readily observed. In fact, in
collisions with atoms in this ‘‘stretched’’ state there exists
exactly one channel with zero relative nuclear orbital

angular momentum ~‘. Consequently, for ultracold colli-
sions resonances only occur due to anisotropic coupling to
bound states with nonzero ‘. This is in contrast with
collisions between alkali-metal atoms in the energetically
lowest hyperfine level. Multiple ‘ ¼ 0 or s-wave channels
are present and s-wave Feshbach resonances exist.

We start by setting up the Hamiltonian, interatomic
potentials, and channel basis for two bosonic 5I8 Dy atoms

with zero nuclear spin. This Hamiltonian assuming a mag-
netic field B along the ẑ direction is

H ¼ � @
2

2�r

d2

dR2
þ

~‘
2

2�rR
2
þHZ þ Vð ~R; �Þ; (1)

where ~R describes the orientation of and separation be-
tween the two atoms. The first two terms are the radial
kinetic and rotational energy operators, respectively.
The Zeeman interaction is HZ ¼ gj�Bðj1z þ j2zÞB with

gj ¼ 1:24159 the g factor of Dy [21], and jiz is the z

component of the angular momentum operator ~|i of atom
i ¼ 1, 2. The electronic Hamiltonian, including nuclear

repulsion, Vð ~R; �Þ is anisotropic, and � labels the electronic
variables. Finally, �r is the reduced mass, and for R ! 1
the interaction Vð ~R; �Þ ! 0.

Our coupled-channel calculations [22] are performed in
the atomic basis jðj1j2Þjmj; ‘m‘i � Y‘m‘

ð�;�Þjðj1j2Þjmji,
where ~| ¼ ~|1 þ ~|2 with its projection mj, Y‘m‘

ð�;�Þ is a
spherical harmonic and angles � and� give the orientation
of the internuclear axis relative to the magnetic field
direction. In this basis, the Zeeman and rotational interac-
tion are diagonal with energies gj�BmjBþ @

2‘ð‘þ 1Þ=
ð2�rR

2Þ. Coupling between the basis states is due to

Vð ~R; �Þ and will be discussed in detail below. Excited
atomic states, for example those with ji � 8, are not in-
cluded as their internal energy is sufficiently high that the
effects of coupling to these states is negligible. The
Hamiltonian H conservesMtot ¼ mj þm‘ and is invariant

under the parity operation so that only even (odd) ‘ are
coupled. For homonuclear collisions, only basis states with
even jþ ‘ exist. Figure 1 shows an example of the long-
range diagonal matrix elements in the atomic basis of the
sum of the rotational, Zeeman, and electronic Hamiltonian.
We have used Mtot ¼ �16 and even ‘ � 10. In fact, only
the potentials dissociating to the six energetically lowest
Zeeman states are shown. The large number of potentials
indicates the large number of resonances that, in principle,
are possible.

Coupling between basis states is due to Vð ~R; �Þ. It is
convenient to first evaluate this operator in a molecular
basis with body-fixed projection quantum numbers defined

with respect to the internuclear axis. We use the molecular
basis jðj1j2Þj�i with projection � of ~| along the internu-

clear axis. The matrix elements of Vð ~R; �Þ conserve the

projection � but not j. The eigenenergies of Vð ~R; �Þ at
each value of R are the adiabatic (relativistic) BO poten-
tials [23,24]. Typically, these potentials Unj�j�ðRÞ are ob-
tained from an electronic structure calculation and labeled
by nj�j�� , where j�j is the absolute value of �, � ¼ g=u
is the gerade/ungerade symmetry of the electronic wave
function, and n ¼ 1; 2; . . . labels curves of the same j�j�g=u
in order of increasing energy. For bosonic Dy2, the 81
gerade (72 ungerade) states are superpositions of even
(odd) j.
For R> 27a0, beyond the Le Roy radius where the

atomic electron clouds have negligible overlap, Vð ~R; �Þ is
the sum of the magnetic dipole-dipole, V��ð ~RÞ / 1=R3,

the electrostatic quadrupole-quadrupole, VQQð ~RÞ / 1=R5,

and the van der Waals dispersion Vdispð ~RÞ / 1=R6 interac-

tion. Reference [15] reported the matrix elements of the

operator Vdispð ~RÞ in the molecular basis and tabulated the

adiabatic C6;n�� dispersion coefficients obtained by diago-

nalizing Vdispð ~RÞ. Crucially, the eigenfunctions of Vdispð ~RÞ
are independent of R.
At shorter range, coupling between basis states is more

complex. Rather than determining all BO potentials, we
have opted for the following approach. First, we calculate
the single gerade potential U16gðRÞ with maximal projec-

tion � ¼ 16 (and omitting the n ¼ 1 label) using a
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FIG. 1 (color online). Potential energy curves for 164Dyþ
164Dy collisions in a magnetic field B as a function of internu-
clear separation. The (red) dashed line with zero energy indicates
the energy of the entrance channel. A resonance occurs when a
bound state energy equals the entrance-channel energy.
The graph shows the 91 diagonal potential matrix elements at
B ¼ 50 G for channels jðj1j2Þjmj; ‘m‘i with mj þm‘ ¼ �16

and even ‘ � 10. The curves are colored by their mj value.

The ‘ value for mj ¼ �16 curves is indicated. Here 1 G ¼
0:1 mT, a0 ¼ 0:0529177 nm is the Bohr radius, and
k ¼ 1:38065� 10�23 J=K is the Boltzmann constant.
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coupled-cluster method with single, double, and perturba-
tive triple excitations [CCSD(T)] [25] together with the
scalar relativistic Stuttgart ECP28MWB pseudopotential
and associated atomic basis sets ð14s; 13p; 10d; 8f; 6gÞ=
½10s8p5d4f3g�. The potential has a minimum at Re ¼
8:771a0 with depth De=ðhcÞ ¼ 785:7 cm�1. For 164Dy2,
it has a !e=ðhcÞ ¼ 25:6 cm�1 and has 71 bound states.

We then assume that the R< 27a0 electronic wave
functions of the adiabatic BO potentials are the same as
those determined by the dispersion interaction, and the
relation between energies of the ab initio potentials is the
same as for its C6 coefficient. I.e., for R< 27a0 the adia-
batic potentials satisfy Un��ðRÞ=Un0��ðRÞ ¼ C6;n��=
C6;n0�0� with the R-independent eigenfunctions of the dis-
persion interaction. As an initial model of the short-range
interactions this approach is justified because at R ¼ 27a0
the dispersion potential is the dominant interaction.
Furthermore, the open 4f10 shell is located deep within
the core, does not overlap significantly with the electron
cloud of the nearby Dy atom, and thus for R< 27a0, does
not induce significant additional anisotropic interactions.
Bonding is predominantly due to overlap of the isotropic
6s2 shells.

Equivalently, Vð ~R; �Þ is given by

Vð ~R; �Þ ¼ V��ð ~RÞ þ VQQð ~RÞ þ
U16gðRÞ

ULR;16gðRÞVdispð ~RÞ (2)

for any R, where ULR;16gðRÞ is the long-range form of the

� ¼ 16 BO potential. Hence, U16gðRÞ ¼ ULR;16gðRÞ for

R> 27a0 where it contains contributions from the disper-
sion and quadrupole-quadrupole interaction. Most impor-
tantly, Eq. (2) shows that there is only one independent
short-range potential.

For practical reasons, it is advantageous to write Vdispð ~RÞ
as a sum of spherical tensor operators in the laboratory
frame. That is

Vdispð ~RÞ ¼ 1

R6

X

kq

X

i

cðiÞk ð�1ÞqCk;�qð�;�ÞTðiÞ
kq; (3)

where Ckqð�;�Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�=ð2kþ 1Þp

Ykqð�;�Þ and the

spherical tensors TðiÞ
kq of rank k and with components q

are defined by

Tð1Þ
00 ¼ I; Tð1Þ

2q ¼ ½j1 � j1�2q þ ½j2 � j2�2q;
Tð2Þ
2q ¼ ½j1 � j2�2q; Tð2Þ

00 ¼ ½j1 � j2�00;
Tð1Þ
4q ¼ ½½j1 � j1�2 � ½j2 � j2�2�4q;

Tð3Þ
2q ¼ ½½j1 � j1�2 � ½j2 � j2�2�2q;

Tð3Þ
00 ¼ ½½j1 � j1�2 � ½j2 � j2�2�00; (4)

where I is the identity operator and ½j � j0�kq denotes a

tensor product of angular momentum operators ~| and ~|0
coupled to an operator of rank k and component q [26]. The

higher-order tensor operators are constructed in an analo-
gous manner. Equation (4) has three, three, and one tensors

TðiÞ
kq of rank k ¼ 0, 2, and 4, respectively. The seven dis-

persion coefficients cðiÞk are listed in Table I. The operator

order in Eq. (4) is by decreasing absolute value of cðiÞk . The

isotropic Tð1Þ
00 term is the largest by far with the strongest

anisotropic contribution from the dipolar operator Tð1Þ
2q

constructed from the angular momentum of only one
atom coupled to the rotation of the molecule. Finally, the
magnetic dipole-dipole and quadrupole-quadrupole inter-
actions are

V��ð ~RÞ ¼ 1

R3
c��

X

q

ð�1ÞqC2;�qð�;�ÞTð2Þ
2q (5)

and

VQQð ~RÞ ¼ 1

R5
cQQ

X

q

ð�1ÞqC4;�qð�;�ÞTð1Þ
4q ; (6)

respectively. Their strengths are listed in Table I.
Figure 2 shows the scattering length as a function of the

magnetic field strength for the collision between two
m ¼ �8 164Dy atoms at a collision energy of E=k ¼
30 nK. We use Mtot ¼ �16 and include 91 channels with
even ‘ � 10. Fields up to B ¼ 200 G are experimentally
easily accessible [16]. The graph shows about 10 Feshbach
resonances; some are broad, many are very narrow. By
performing calculations that include fewer partial waves
we have observed that the resonances can not be labeled by
a single partial wave. For example, the broad resonances at
B � 30, 110, and 170 G are already present when only
‘ ¼ 0, 2, and 4 channels are included. Their locations,
however, shift significantly when higher ‘ channels are
included and only converge to within a few Gauss when
‘ ¼ 8 channels are included. In general, we find that the
magnetic-field location of a resonance that appears when
channels with partial wave ‘ are included stabilizes when
channels up to ‘þ 4 are included. Hence, resonances can
be labeled by the first partial wave quantum number for
which the resonance appeared. In Fig. 2, the first partial
wave for the three broad resonances is shown. We stress
that this behavior with increasing number of partial waves
is unlike that observed in alkali-metal atom collisions [16]
or even in collisions of strongly magnetic chromium atoms

TABLE I. Dispersion coefficients cðiÞk in units of EHa
6
0, where

EH ¼ 4:35974� 10�18 J is the Hartree energy. The strength
of the magnetic dipole-dipole and quadrupole-qudrupole
interactions are c�� ¼ �5:0269� 10�3 EHa

3
0 and cQQ ¼

9:5719� 10�8 EHa
5
0, respectively.

k i 1 2 3

0 �1873:4 3:57� 10�3 �6:82� 10�6

2 �0:1680 5:06� 10�3 �8:15� 10�6

4 �6:56� 10�5
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[27]. For these atoms, resonances do not shift by more than
a few Gauss when additional partial waves are added. For
dysprosium, the anisotropic interactions are so strong that
states with different partial waves are strongly mixed.

We have also studied the effect of the uncertainty in the
depth of U16gðRÞ. The depth De was changed by adding a

localized correction that does not modify the long-range
potential. A depth change by� 10 cm�1 changes its num-
ber of bound states by one. Even much smaller changes
modify the resonance spectrum nontrivially. Resonance
widths are dramatically modified and broad resonances
that appear when d-wave channels are included can be
observed.

The precise form of short-range potential and dispersion
coefficients are not known. A few percent uncertainty
is not unrealistic. For this Letter, we have constructed
potentials that lead to a positive B ¼ 0 scattering length
a for 164Dy atoms in the m ¼ �8 state. This choice
is suggested by a recent observation of a BEC of 164Dy
atoms at nearly zero magnetic field, which indicates a
positive scattering length at this field [8]. Moreover, we
chose the scattering length to be approximately equal to the
mean scattering length [28] for a (fictitious) van der Waals
potential with a C6 coefficient equal to the isotropic dis-
persion coefficient.

To further elucidate the effect of anisotropy, Fig. 2 also
shows the scattering length as a function of magnetic field
when parts of the anisotropy are turned off. The top panel

displays the case when all interactions are included. The
bottom two panels show the effect of turning of the anisot-
ropy in the dispersion and magnetic dipole-dipole interac-
tion, respectively. The resonance spectra in the three panels
are quite distinct. The number of resonances differs, and
with one exception, the resonances are narrower.
Finally, Fig. 3 illustrates the effect of changing to differ-

ent bosonic Dy isotopes. Since to good approximation BO
potentials are indendent of isotope, the coupled-channels
equations are solved using the appropriate reduced mass.
This observation has explained the relationships between
scattering lengths of isotopic combinations of spinless
ytterbium [29], while its limitations for lithium Feshbach
resonances have been studied in Ref. [30]. The field de-
pendence of the scattering length for 160Dy and 162Dy are
significantly different, indicating that measurement of
resonance locations in different isotopes is invaluable in
understanding Dy scattering.
Conclusion.—Applying a full coupled-channels calcu-

lation for ultracold atom-atom collisions, we have shown
that the origin of Feshbach resonances in interactions
between ultracold rare-earth-metal atoms with large mag-
netic moments result from strong scattering anisotropies.
By tuning an applied magnetic field, we predict resonances
and control of collision cross sections even for atoms with
zero nuclear spin. We have investigated the effects of
different short- and long-range anisotropic potentials as
well as different isotopes on the scattering length of Dy.
For a more realistic description of dysprosium collision

we expect that the number of short-range parameters is

larger than one. We observed that there are seven cðiÞk
coefficients in Eq. (3) and Table I describing the long-range
behaviour of all 153 BO potentials. Based on the nature of
the submerged f10 shell, it is a reasonable assumption that
we only need one short-range parameter for each of the

seven cðiÞk coefficients. Furthermore, we note that not all
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parameters might be equally important. For example, the

relative strength of the cðiÞk coefficients shows that, at least at

long range, some tensor operators are less relevant. We can
use this observation to systematically increase the number
of independent short-range parameters. This can only be
validated by comparison to future experimental data.

This study forms a first prediction of the anisotropic
nature of Feshbach resonances for ultracold dysprosium
atoms. The specific positions of the resonances can not be
predicted at this time due to the uncertainties in the short-
range form of the interaction potentials. To optimize the
potentials we must await experimental observations of
resonances from multiple isotopic combinations.
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