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We present a generating functional which describes the equilibrium thermodynamic response of a

relativistic system to external sources. A variational principle gives rise to constraints on the response

parameters of relativistic hydrodynamics without making use of an entropy current. Our method

reproduces and extends results available in the literature. It also provides a technique for efficiently

computing n-point zero-frequency correlation functions within the hydrodynamic derivative expansion

without the need to explicitly solve the equations of hydrodynamics.
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Introduction.—Hydrodynamics is a generic effective
theory, valid on distance scales much longer than the
typical mean free path, and applicable to many diverse
physical theories at finite temperature [1]. The equations
of hydrodynamics are characterized by several response
parameters which need to be specified for each particular
system. These response parameters are usually constrained
by a set of equalities and inequalities which are conven-
tionally determined by requiring the existence of a local
entropy current with positive semidefinite divergence. In
this Letter, we will systematically derive the equality-type
constraints on the response parameters of relativistic hy-
drodynamics using a variational principle.

In the hydrodynamic regime, a relativistic system can be
described in terms of a velocity field u�, normalized such
that u�u

� ¼ �1, and a temperature T. When there is a

conserved Uð1Þ charge, the corresponding chemical poten-
tial � provides an additional hydrodynamic degree of
freedom. If the Uð1Þ symmetry is spontaneously broken,
the emerging Goldstone boson � also turns into a hydro-
dynamic degree of freedom.

The energy-momentum tensor T�� and the (nonanoma-
lous) charge current J� may be expressed through constit-
utive relations in terms of the hydrodynamic variables and
their gradients. The kinematic equations for hydrodynam-
ics then amount to energy-momentum and charge conser-
vation,

D�T
�� ¼ F��J�; D�J

� ¼ 0: (1)

In Eq. (1), F�� is the field strength of a background gauge
field A� conjugate to J�. The covariant derivative D�

depends on a background metric g��.

In d spacetime dimensions, we decompose the energy-
momentum tensor and Uð1Þ current into scalars, vectors,
and tensors of the SOðd� 1Þ � SOðd� 1; 1Þ symmetry
preserved by u�,

T�� ¼ Eu�u� þ P��� þ q�u� þ q�u� þ ���;

J� ¼ N u� þ ��;
(2)

where ��� ¼ g�� þ u�u� is a projection matrix, q�u� ¼
��u� ¼ 0, and u��

�� ¼ g���
�� ¼ 0. The scalars E, P ,

and N along with the vectors q�, ��, and the tensor ���

may be written as local functions of the hydrodynamic
variables and their derivatives. In the hydrodynamic ap-
proximation, the constitutive relations (2) can be written in
a derivative expansion [2].
Several considerations come into play in determining

which tensor structures can contribute to the quantities
in (2). First, we note that there is an inherent ambiguity
in defining the velocity field, temperature, and chemical
potential out of equilibrium. We may always redefine
T ! T þ �T, � ! �þ ��, and u� ! u� þ �u� such
that �T, ��, and �u� vanish in the absence of gradients.
Such field redefinitions are called changes of frame. A
canonical choice of frame is the Landau frame in which
q� ¼ 0, E ¼ �, and N ¼ � with � and � the energy and
charge densities in the absence of gradients. Even after
choosing a frame, not all tensor structures are allowed; as it
turns out, the existence of an entropy current together with
the Onsager relations leads to restrictions on the allowed
tensor structures [1].
The restrictions imposed by the existence of an entropy

current are either inequalities or equalities. For example, in
the presence of an electric field, the tensor decomposition
of the current, Ji ¼ ��i�@�

�
T þ 	Ei, is subject to an

equality-type relation, � ¼ �	T. In this Letter, we sys-
tematically show how relations of this type are enforced by
the equilibrium properties of the theory in the presence of
external sources A� and g��, and follow from a variational

principle. As a result, we learn that the hydrodynamic
constitutive relations are constrained both by symmetry
and by the need to consistently describe static equilibria
with external sources.
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Equilibria.—A time-independent equilibrium configura-
tion can be characterized by a constant timelike vector V�,
where V� ¼ ð1; 0Þ in suitable coordinates. Starting from a
source-free equilibrium configuration we assume that finite
sources can be turned on adiabatically while maintaining
equilibrium. In other words, we will only be considering
configurations in which the Lie derivative with respect to
V�, LV , vanishes when acting on thermodynamic quanti-
ties or sources. Furthermore, we will be studying configu-
rations with a finite static correlation length. Thus,
Euclidean correlation functions fall off exponentially at
large distances, implying that zero-frequency Fourier-
space correlators are analytic at low momentum.

Correlators in the equilibrium configuration can be
obtained by differentiating a generating functional with
respect to the sources. Indeed, consider the set of all
zero-frequency correlation functions, expanded to mth or-
der in momenta about zero. We call these n-point functions
truncated correlators. After a Fourier transform, we obtain
approximate position-space correlation functions valid on
length scales much larger than the correlation length of the
system, much like a multipole approximation characterizes
a localized distribution on large scales. Integrating the
truncated functions over sources leads to one-point func-
tions, which will be local functions of the sources. These
may be further integrated to obtain the equilibrium gen-
erating functional for truncated correlation functions,

Wm ¼
Z

ddxL½sourcesðxÞ�; (3)

where L includes terms with up to m derivatives [3].
In order forWm to be diffeomorphism and gauge invari-

ant,Lmust be constructed from local diffeomorphism and
gauge invariant scalars, possibly in combination with V�.
In addition, L can depend on observables that are local in
space but nonlocal in Euclidean time such as the invariant
length of the time circle in the Euclideanized theory L, and
the Polyakov loops PA of any Uð1Þ gauge fields. Since

LV ¼ 0, we find L ¼ 

ffiffiffiffiffiffiffiffiffiffi
�V2

p
and lnPA ¼ 
V�A�, where


 is the coordinate periodicity of the time circle [5]. We
identify the temperature T, the chemical potential �, and
the velocity field u� as

T ¼ 1=L; � ¼ lnPA=L; u� ¼ V�ffiffiffiffiffiffiffiffiffiffi�V2
p : (4)

The parameters T, �, and u� depend on position through
A� and V�.

Suppose that there are Nn scalar quantities at nth order
in a derivative expansion. We will denote them by
sn;1; sn;2; . . . ; sn;Nn

. For instance, in a theory containing a

single conserved current (corresponding to an unbroken
symmetry), we have s0;1 ¼ T and s0;2 ¼ �. The most

general generating functional for truncated zero-frequency
correlators is of the form

Wm ¼
Z

ddx
ffiffiffiffiffiffiffi�g

p �
Pðs0Þ þ

Xm
n¼1

XNn

i¼1

�n;iðs0Þsn;i
�
; (5)

where the �n;i and P are functions of the zeroth-order

scalars which we denoted collectively by s0. In the
source-free equilibrium state, all of the derivative contri-
butions to (5) vanish, so that Wm is the logarithm of the
exact equilibrium partition function. Thus, we identify P
with the pressure of the source-free equilibrium state.
We obtain one-point functions of the energy-momentum

tensor and conserved current, which are to be compared
with the constitutive relations in (2), by varying Wm with
respect to the metric and gauge field,

hT��i ¼ 2ffiffiffiffiffiffiffi�g
p �Wm

�g��

; hJ�i ¼ 1ffiffiffiffiffiffiffi�g
p �Wm

�A�

: (6)

If we denote the set of nth-order transverse vectors and
transverse traceless tensors by vn;i and tn;i then, on com-

paring (6) to (2), we find

E ¼ Xm
n¼0

XNn

i¼1

�n;isn;i; P ¼ Xm
n¼0

XNn

i¼1

�n;isn;i;

N ¼ Xm
n¼0

XNn

i¼1

�n;isn;i; q� ¼ Xm
n¼0

XNn

i¼1

n;iv
�
n;i;

�� ¼ Xm
n¼0

XNn

i¼1

�n;iv
�
n;i; ��� ¼ Xm

n¼0

XNn

i¼1

�n;it
��
n;i ;

(7)

where the �’s, �’s, �’s, ’s, �’s, and �’s are determined in
terms of the �’s and their derivatives. While the most
general expression for the energy-momentum tensor and
current takes the form (2), for equilibrium states T�� and
J� are obtained via (6) from a local generating functional.
Consequently, not all tensor, vector, and scalar structures
are allowed, and relations of the form (7) hold. We will
illustrate these constraints in three explicit examples
below.
The gauge and diffeomorphism invariance of Wm en-

sures that the solution (6) and (7) will satisfy the hydro-
dynamic equations (1). In other words, the geometric
conditionLV ¼ 0 automatically implies that the equations
(1) are satisfied by these equilibrium configurations.
Matching the thermodynamic theory to the effective hydro-
dynamic description (7) gives the constitutive relations in a
particular frame, which we call the thermodynamic frame.
In this frame, the values for the temperature, chemical
potential, and velocity field remain unchanged from their
equilibrium definitions (4) after the hydrodynamic equa-
tions have been solved.
In what follows we will give several explicit examples of

systems where the relations (7) are obtained from the
generating functional (5). Some of these systems have
been analyzed in the literature by requiring the existence
of an entropy current. The nondissipative constraints
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obtained using the entropy current method match those
obtained here, in all our examples.

Example 1: ideal superfluids.—We begin by construct-
ing the generating functional and computing the one-point
functions for a superfluid to zeroth order in derivatives (i.e.,
an ideal superfluid; see [6,7] for a brief review). In addition
to the zeroth-order scalars s0;1 ¼ T and s0;2 ¼ � we can,

a priori, construct two scalars from the extra hydrody-
namic degree of freedom associated with the Goldstone
boson, ���� ¼ ��2 and u���, where �� is the gauge

invariant combination �� ¼ �@��þ A�. SinceLV�¼0

implies that u��� ¼ �, only s0;3¼�2 is an independent

scalar. According to (5), the generating functional takes
the form

W0 ¼
Z

ddx
ffiffiffiffiffiffiffi�g

p
PðT;�; �2Þ: (8)

For the special case of an ideal normal fluid with � ¼ 0, we

obtain hJ�i ¼ @P
@�

@�
@A�

¼ @P
@� u

� ¼ �u� using (6). The con-

straint LV ¼ 0 ensures that the conservation equation
@�hJ�i ¼ 0 in (1) is automatically satisfied since

u�@�PðT;�Þ ¼ 0 and @�u
� ¼ 0 using (4) in equilibrium.

Generalizing to the superfluid, and also accounting for the
energy-momentum tensor, we find

hT��i ¼ �u�u� þ P��� þ f����;

hJ�i ¼ �u� � f��; u��� ¼ �;
(9)

with dP ¼ sdT þ �d�þ 1
2 fd�

2 and � ¼ Tsþ��� P

[8]. The expressions in (9) precisely match those of an
ideal superfluid in the notation of [9]. For � ¼ 0 as above,
we recover the standard expression for an ideal normal
fluid.

Example 2: parity-violating fluids.—For parity-violating
theories in 2þ 1 dimensions with a conserved Uð1Þ
charge, the zeroth-order scalars are s0;1 ¼ T and s0;2 ¼
�. At first order in the derivative expansion, there are
a priori three scalars, D�u

�, u�@�T, and u�@��.

However, all three scalars vanish identically since
LV ¼ 0. There are two nonvanishing pseudoscalars, ~s1
and ~s2 defined in Table I, which specify the magnetic field
and vorticity. Thus, we have the generating functional,

W1 ¼
Z

d3x
ffiffiffiffiffiffiffi�g

p ½PðT;�Þ þ ~�1~s1 þ ~�2~s2�: (10)

The notation in (10) deviates slightly from (5) in that the
coefficients of parity-odd tensors are adorned with a tilde.

Furthermore, since all the results in this example involve
tensors with one derivative, we have also dropped the
derivative index n. We use the same simplified notation
for the quantities in (7).
An exhaustive list of all possible first-derivative tensors

can be found in [10]. The constraint LV ¼ 0 leads to the
restricted list given in Table I. Indeed, in equilibrium we
find that

@�T ¼ �Ta�; @�� ¼ ��a� þ E�;

D�u� ¼ �u�a� þ!��
(11)

are satisfied identically, where we have defined a� ¼
u�D�u

� and !�� ¼ �����	

2 ðD�u	 �D	u�Þ. Thus, the

shear tensor 	�� constructed from the projected, traceless,
symmetrized version of D�u� vanishes, as does the vector

E� � T@�
�
T . We note that both 	�� and E� � T@�

�
T

contribute to dissipation, consistent with the claim that
we are studying equilibrium states.
By varyingW1 with respect to the metric and gauge field

and decomposing according to (2) and (7), we find

~�i¼i¼�i¼0; ~�2¼ ~1¼ _~�2� ~�1;

~�1¼ ~�1¼ _~�1; ~�1¼T ~�2¼T ~�0
1þ� _~�1� ~�1;

~�2¼T ~2¼T ~�0
2þ� _~�2�2~�2;

(12)

where a prime denotes a derivative with respect to T and a
dot a derivative with respect to �.
An analysis of parity-violating hydrodynamics in 2þ 1

dimensions based on a local version of the second law of
thermodynamics can be found in [10]. Those results were
presented in the Landau frame with

P ¼ P� ~�B~s1 � ~��~s2 þ � � ���

¼ �Ev
�
1 þ �Tv

�
2 þ ~�E~v

�
1 þ ~�T ~v

�
2 þ � � � ; (13)

where the ellipsis denotes tensors which vanish in the
equilibrium states under consideration. Matching the ther-
modynamic result (12) to the Landau frame coefficients,
we find

~�B ¼ ~�1 � @P

@�
~�1 � @P

@�
~�1; ~�E ¼ ~�1 � R~1;

~�� ¼ ~�2 � @P

@�
~�2 � @P

@�
~�2; ~�T ¼ ~�2 � R~2;

�E ¼ �1 � R1; �T ¼ �2 � R2; (14)

withR ¼ �=ð�þ PÞ, where @P
@� and

@P
@� are evaluated at fixed

� and � respectively. From (12) and (14), we find �E ¼
�T ¼ 0 along with two relations among the four ~�’s. These
relations are identical to those found in [10] with f� ¼ 0,
MB ¼ ~�1, andM� ¼ ~�2. We emphasize that coefficients
associated with tensor structures which vanish are unde-
termined by this method.

TABLE I. Independent first-order data for 2þ 1-dimensional
fluids. We have defined E� ¼ F��u

�.

1 2

Pseudoscalars (~si) � 1
2
ffiffiffiffiffi�g

p ����u�F�� � 1ffiffiffiffiffi�g
p ����u�@�u�

Vectors (vi) E� ���@�T
Pseudovectors (~vi)

1ffiffiffiffiffi�g
p ����u�E�

1ffiffiffiffiffi�g
p ����u�@�T
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Example 3: second-order hydrodynamics.—In our final
example, we consider a parity-preserving theory in d
spacetime dimensions without conserved Uð1Þ currents to
second order in derivatives. There is only one zeroth-order
scalar, s0;1 ¼ T. A computation similar to the one for the

2þ 1-dimensional fluid implies that there are no first-order
scalars and four second-order scalars [11]; see Table II.
Using similar notation to the previous example, we will
drop the derivative index from the quantities in (5) and (7).

Varying the generating functional W2 defined in (5)
with respect to the metric and expanding the resulting
energy-momentum tensor according to (2) and (7), we
find for d > 3

�1 ¼ T�0
1 � �1; �2 ¼ 2Tð�0

2 � �0
1Þ � 2�1 þ 2�4;

�3 ¼ Tð�0
3 þ �0

2 � 2�0
1Þ þ 3ð�2 � �3Þ þ 2�4;

�4 ¼ T2ð2�00
1 � �00

2 Þ þ 2Tð2�0
1 � �0

2Þ � T�0
4 � �4;

�1 ¼ d� 3

d� 1
�1; �2 ¼ 2ðd� 2Þ

d� 1
T�0

1 �
2

d� 1
�1;

�3 ¼ ð�3 � �2Þ d� 5

d� 1
þ 2ðd� 2Þ

d� 1
T�0

1;

�4 ¼ ð�4 þ Tð�0
2 � 2�0

1ÞÞ
d� 3

d� 1
� 2ðd� 2Þ

d� 1
T2�00

1 ;

�1 ¼ �2�1; �3 ¼ 4ð�2 � �3Þ � 2T�0
1;

�2 ¼ �2T�0
1; �4 ¼ 2ðT2�00

1 þ Tð2�0
1 � �0

2Þ � �4Þ;
1 ¼ 2ð�1 þ �2 � �3Þ; 2 ¼ �2Tð�0

1 þ �0
2 � �0

3Þ;
(15)

where the tensor structures ti, vi, and si are given in
Table II. We refer the reader to [13] for a comprehensive
discussion of second-order tensor structures. In three
spacetime dimensions, (15) still describes the expansion
(7) of the energy-momentum tensor, but the list of tensors
is overcomplete. In particular, the tensors t3 and t1 þ t2
vanish so that only the combinations �1 � �2 and �4 appear
in ���.

An analysis of the restrictions on response coefficients
of 3þ 1-dimensional systems to second order in the de-
rivative expansion was carried out in [13] (see also [14]).
The results were presented in the Landau frame, where

P ¼ Tð�2s1 þ �3s2 þ �3s3 þ �4s4Þ þ � � � ���

¼ Tð�1t
��
1 þ �2t

��
2 þ �3t

��
3 þ �4t

��
4 Þ þ � � � : (16)

The frame transformation from the thermodynamic frame
to the Landau frame is given by �u� ¼ q�=ð�þ PÞ and
�T ¼ ð�� EÞ=�0. After carrying out this frame transfor-
mation, we find

T�1 ¼ �1; T�2 ¼ �2; T�3 ¼ �3; T�4 ¼ �4;

T�2 ¼ �1 � @P

@�
�1; T�3 ¼ �2 � @P

@�
�2;

T�3 ¼ �3 � @P

@�
�3; T�4 ¼ �4 � @P

@�
�4; (17)

where @P
@� ¼ s

T
dT
ds . Despite the fact that there are only four

�i’s, one can verify using (15) that there are five relations
between the eight coefficients in (17). These correspond
precisely to the five conditions on the response coefficients
found in [13]. The remaining seven transport coefficients
are undetermined either by requiring the existence of an
entropy current or by the variational method described in
this Letter. The results for d � 4 are new; the variational
method provides a simple alternative to the more onerous
technique which uses the entropy current.
Discussion.—In this work we have studied the implica-

tions of the existence of an equilibrium state on the hydro-
dynamic constitutive relations. We have shown, using three
examples, how relations among response coefficients,
which are canonically derived using a local version of
the second law of thermodynamics, emerge from proper-
ties of the gauge- and diffeomorphism-invariant generating
functional (3).
Varying the generating functional (3) with respect to the

sources leads to zero-frequency n-point Euclidean corre-
lation functions at mth order in momenta. Since the de-
pendence of the generating functional on the sources is
known explicitly, there is no need to explicitly solve the
equations of hydrodynamics in order to compute (trun-
cated) zero-frequency correlators. This significantly re-
duces the complexity of the computation.
More importantly, the thermodynamic relations follow-

ing from the generating functional, combined with the
inequalities imposed on dynamical transport coefficients
from positivity of spectral functions, appear to reproduce
the entire suite of constraints implied by an entropy current
with positive semidefinite divergence. Put differently, re-
quiring the existence of a local entropy current with posi-
tive semidefinite divergence implies several constraints
among the coefficients in the hydrodynamic equations.
Some of these constraints appear in the form of equalities
and others in the form of inequalities. As we have sug-
gested in this Letter, the former constraints can be obtained
by appealing to equilibrium thermodynamics. This sugges-
tion may appear less surprising once we realize that
equality-type constraints relate to dissipationless contribu-
tions to the energy-momentum tensor and charge current.

TABLE II. Independent second-order data. The expressions
for a and ! are given by the inline expression following (11).
R
�
��	 is the Riemann tensor and R the Ricci scalar. Angle

brackets denote a projected traceless symmetrized tensor,
Ah��i ¼ 1

2 �����	ðA�	 þ A	� � 2
d�1g

�	��
A
�
Þ.

1 2 3 4

Scalars ðsiÞ R u�R��u
� !��!�� a�a�

Vectors ðviÞ ���R��u
� !��a�

Tensors ðtiÞ Rh��i �u�R
�h��i	u	 !h��!�

�i ah�a�i
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It would be interesting to study whether all inequality-type
constraints associated with dissipation follow in general
from the positivity properties of even n-point functions.
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Note added.—While this work was in progress, we
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with the content of this Letter [15].
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