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We provide a security analysis for continuous variable quantum key distribution protocols based on the
transmission of two-mode squeezed vacuum states measured via homodyne detection. We employ a

version of the entropic uncertainty relation for smooth entropies to give a lower bound on the number of
secret bits which can be extracted from a finite number of runs of the protocol. This bound is valid under
general coherent attacks, and gives rise to keys which are composably secure. For comparison, we also
give a lower bound valid under the assumption of collective attacks. For both scenarios, we find positive
key rates using experimental parameters reachable today.
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Quantum key distribution (QKD) is one of the first ideas
from quantum information theory for turning quantum
paradoxes into applications, see Ref. [1] and references
therein. The task in QKD is to generate a shared key, secret
from any eavesdropper (Eve), between two distant parties
(Alice and Bob) using communication over a public quan-
tum channel and an authenticated classical channel. Many
different implementations of QKD have been proposed,
each one with individual strengths and weaknesses. Early
proposals were based on exchanging qubits, and are part of
the family of discrete variable (DV) QKD protocols.
Continuous variable (CV) protocols have later been pro-
posed and offer the possibility to use standard telecom
technologies (see Ref. [2] and references therein), in par-
ticular, they do not require photon counters.

A generic QKD protocol starts with the distribution of,
say, N quantum states between the honest parties which are
then measured according to the rules of the protocol. A
certain number k of the measurement outcomes is then
used to estimate Eve’s information about the remaining
n = N — k data points from which a key of length € bits is
generated by classical postprocessing. The goal of a finite-
key security analysis is to prove that the key is secure
against any wiretapping strategy of Eve, up to a small
failure probability. This is in contrast to the study of
asymptotic rates in which perfect security in the limit for
N to infinity is considered.

Eve’s knowledge can be bounded by the probability that
she correctly guesses Alice’s measurement outcomes. This
is expressed by the conditional smooth min-entropy [3] of
the data from which the key is generated given Eve’s
quantum system. This ensures composable security [4];
i.e., the protocol can securely be combined with other
composable secure cryptographic protocols. Since the ac-
tual state is not known, the smooth min-entropy has to be
bounded for the worst case compatible with the observed
measurement data. This is in general a hard task and often
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simplified by additional assumptions about the power of the
eavesdropper. Instead of allowing the most general, coher-
ent attack on the quantum communication between Alice
and Bob, the eavesdropper is often restricted to collective
attacks, meaning that every signal is attacked with the same
quantum operation. Under this assumption, Alice and Bob
can employ state tomography to bound Eve’s information
and to ensure security. In the case of DV QKD, these
security proofs can then often be lifted to security proofs
against coherent attacks using the exponential de Finetti
theorems [5] or the postselection technique [6].

Most security analyses for CV protocols neglect finite-
key effects and consider asymptotic rates by using the
Devetak-Winter formula [7] (see Ref. [8] for the infinite-
dimensional generalization). We are only aware of [9],
where a first finite-key analysis for specific protocols under
the assumption of collective Gaussian attacks was pro-
vided. Security against coherent attacks was considered
in Ref. [10,11] based on entanglement purification proto-
cols, but without a quantitive analysis. The transfer of the
exponential de Finetti technique to the infinite-dimensional
setting is very subtle. This is because exponential de Finetti
theorems in general do not hold in infinite-dimensional
systems [12], but only under additional assumptions [13].
It is often argued that, using these results, much of the DV
theory can be transferred to CV systems. Unfortunately,
this approach provides only pessimistic finite-key rate
estimates (c.f. [14]).

Recently, a more direct approach to prove DV QKD
secure against coherent attacks was presented in
Ref. [15], which is based on an entropic uncertainty rela-
tion with quantum side information for smooth entropies
[16]. This uncertainty relation gives a bound on Eve’s
information about Alice’s measurement outcomes in terms
of the correlation between Alice and Bob. The relation
between security in QKD and uncertainty relations has
also been employed in Refs. [17,18]. Based on the recent
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extension of the smooth entropy formalism to the infinite-
dimensional setting [8,19], it is the objective of this Letter
to apply the above reasoning to an entanglement based CV
protocol using two-mode squeezed vacuum states mea-
sured via homodyne detection.

Security definition and key rates.—A generic QKD pro-
tocol between two honest parties, Alice (A) and Bob (B)
either aborts or outputs a key which consists of strings S,
and Sp on Alice’s and Bob’s side, respectively. We denote
by E the information which is wiretapped during the run of
the protocol by an attack on the quantum channel. For CV
systems this is modeled on an infinite-dimensional Hilbert
space. The state of S, and E can be described as a classical
quantum state

ws,p = Y |s)s| ® o, (1)

where wj}; are states on Eve’s system. Three requirements
have to be fulfilled by an ideal protocol: correctness,
secrecy, and robustness. Correctness is achieved when
the outputs on Alice’s and Bob’s side agree, S, = Sp.
Secrecy of a key means that S, is uniformly distributed
and independent of E and thus given by w§ , = 75, ® o7,
with 7, the uniform mixture of keys, and o an arbitrary
state on the E system. A protocol is called secure if it is
both correct and secret. Finally, we call an ideal protocol
robust if it never aborts when Eve is passive.

In reality, we can only hope to achieve an almost ideal
protocol. For small parameters €., €, and an abortion
probability papor» We require that the protocol is
€.-correct, i.e., Pr[S, # Sz] =< €., and that the protocol
is eg-secret, i.e., (1 = puwor) 3llws, g — 75, ® wpll = €.
Note that a protocol which always aborts is secure. Thus
we may impose an additional requirement on the robust-
ness, €.g., Pavort < 1. This security definition also ensures
that the protocol is secure in the framework of composable
security [4], in which different cryptographic protocols can
be combined without compromising the overall security.
We note that this is not the case for security definitions
which are based on a small value of the mutual information
between the eavesdropper and the key [20].

The measurement step of a QKD protocol produces a
pair of raw keys, X, and X, held by Alice and Bob. If the
protocol does not abort, the secret keys S, and Sp are
extracted using classical error correction and privacy am-
plification schemes. We do not discuss the error correction
scheme here and simply assume that it will leak €5 bits
of information about the key to the eavesdropper. The
correctness is checked using a hash function evaluated on
both resulting strings which leads to an additional leakage
of order 0(10g€l£) [15].

In the privacy amplification step, two-universal hash
functions are used to compress the raw key to the final
length of € bits. Roughly speaking, this reduces Eve’s
knowledge about Alice’s key by €, — € bits if €, is

the length of X, measured in bits. Hence, choosing suffi-
ciently small € ensures that Eve has no information about
the resulting bit strings and the key is independent of E.
Formally, Eve’s uncertainty (or lack of knowledge) is
measured in terms of the probability that she can guess
Alice’s raw key X,, i.e., the conditional min-entropy
H,i(X4|E) (see Ref. [21], I for a formal definition). In
particular, the resulting key is €,-secret if [3,8,22]

1
€ =< HE, (X4|E), — €ec — 0(10g€ . ), 2)

where € < €,/p.pon- Here, the smooth min-entropy,
HE. (X4|E), is the maximization of the min-entropy over
states which are € close to wy, g, where wy g denotes the
joint state prior to the classical postprocessing conditioned
on the event that the protocol does not abort. We derive
lower bounds on this entropy for the following protocol.

The protocol.—The analysis of coherent and collective
attacks can widely be treated in parallel. We consider a
trusted source located in Alice’s lab that produces an
entangled state by mixing two squeezed vacuum states
on a balanced beam splitter. We assume that each beam
consists of only one bosonic mode. Alice sends one beam
to Bob whereupon both perform a homodyne measure-
ment. They choose uniformly at random between two
canonically conjugated quadrature observables, amplitude
and phase, such that Alice’s and Bob’s outcomes are
maximally correlated whenever their choices agree. In
the case of collective attacks they additionally perform
measurements to estimate the covariance matrix. We fur-
ther assume that the states generated by the source have
tensor product form and that the probability that Alice
measures an amplitude or phase quadrature is larger than
a (h = 1) is bounded by p,. This is possible since the
source is trusted and located in Alice’s lab.

After all measurements are performed, the two parties
reveal their measurement choices. In the case of coherent
attacks, they discard the data in which they have measured
different quadratures ending up with a string of N
measurement results. Then, they divide the continuous
outcome range of the quadrature measurements into inter-
vals (=00, —a + 8], (—a + 6, —a + 25],...,(a — 8, )
where we assume for simplicity that 2a/6 € N. We de-
note the outcome alphabet by X ={1,2,...,2a/6}. A
random sample X}°, X§° € X* of length k is used for
parameter estimation, in which they check the quality of
their correlation by computing the average distance
AT, X)) = 1S X — XIE] where X — (XT%)L,
andX}y = (Xp)h,. If d(X¥, X' is smaller than d; they
proceed and otherwise they abort the protocol. In case the
test is passed, they use the remaining data X,, Xz € X"
(n = N — k) as the raw key and execute the error correc-
tion and privacy amplification protocol as discussed in the
paragraph before. For collective attacks, the strings X, €
X" and Xz € X" are generated as for coherent attacks but
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the remaining data (before the binning) is used to estimate
the covariance matrix. This also includes the one in which
Alice and Bob measured different quadratures.

Analysis for coherent attacks.—The goal is to bound the
smooth min-entropy conditioned on the event that the
protocol does not abort. For that we use an infinite-
dimensional version of the entropic uncertainty relation
for smooth entropies with side information [8], combining
the uncertainty principle for complementary measure-
ments with monogamy of entanglement. It states that
Eve’s information about the measurement outcomes X,
can be bounded by using the complementary of the mea-
surements and the correlation between X, and Xp. In
particular, if Alice and Bob are highly correlated after
measuring, e.g., the phase quadrature, then Eve’s knowl-
edge about the outcome of the amplitude measurement is
nearly zero, since the observables are maximally comple-
mentary. We measure this correlation strength by the
smooth max-entropy HE,(X4|Xg), which characterizes
the amount of information Alice has to send Bob to retrieve
X,4. This leads to the bound ([21], II)

Hi KBy = nlog s~ HiwXalXp)u @)
where ¢(8) is the overlap of the two conjugated quadrature
measurements on an interval of length & which is well
approximated by c(8) = §?/(27) for small §. By log we
denote the binary logarithm. Equation (3) assumes a uni-
formly random choice of measurement settings. Since
projectors onto intervals (—oo, —«] and [a, ) would
lead to a trivial state-independent uncertainty relation,
the probability of this event has to be estimated using
P In Eq. (3) this is included in the change of the smooth-
ing parameter from e to €' ([21], II).

This reduces the problem to upper bounding the smooth
max-entropy between X, and Xp, which can be done by
nlogy(d(Xy, X)), where 7y is a function arising from a
large deviation consideration ([21], III). Using sampling
theory, the quantity d(X,, Xp) can then, with high proba-
bility, be estimated by d(X%’, X5) plus a correction u,
which quantifies its statistical deviation to d(X,, X) and
depends on p,, k, and n. Since the protocol aborts if
d(X%, X¥') > d, we obtain the following formula for the
key length ([21], IV): For parameters k, p,, 0, dy, an
€ -secret key of length

€= nIilo,gL — logy(dy + ,u)] — {pc — 0<logL).
C 6) s€c
can be extracted.

We assume that the source in Alice’s lab is trusted and
that her measurement device is described by projections
onto two canonical variables. Note that the measurement
device on Bob’s side need not to be trusted, except that
measurements on different signals commute. Hence, the
additional reference signal (local oscillator) used by Bob

for homodyne detection is covered by our security analysis.
Placing the trusted source in Alice’s lab also implies that
the analysis is not compatible with reverse reconciliation.

We calculate the correlation between X, and Xz under
the assumption of an identically and independently distrib-
uted source producing states with an input squeezing of
11 dB and antisqueezing of 16 dB. Squeezing at this level
has been realized in an experiment at 1550 nm [23]. Our
noise model consists of loss and excess noise, where the
latter is set to be 1% as it is mainly due to the classical data
acquisition ([21], V). The leakage term is estimated assum-
ing an error correction efficiency of 0.95 [24] (see
Ref. [21], IV for details). In Fig. 1 the resulting key rates
¢/N (number of extractable secure bits per signal) are
plotted for different symmetric losses. We have set security
parameters €, = €, = 1076 such that the leakage per bit is
€/€ < 107! for the relevant values of N [15]. The opti-
mization over the other free parameters is done numeri-
cally for each N. Typical values for N = 10° are k = 108,
a =52 and 6§ = 0.01.

Analysis for collective attacks.—Under the assumption
of collective attacks, the state between Alice, Bob, and
Eve has tensor product structure, w %5, enabling statistical
estimations of the covariance matrix of w,p. However, we
do not cover the statistical details here and simply intro-
duce confidence sets Cepe, which ensure that whenever the

protocol does not abort the covariance matrix I'yp of w,p
lies in Cepe with probability at least 1 — €,.. Hence, we
have to give a lower bound on the smooth min-entropy
HE, (X4]E),en over all states with a covariance matrix
Iyg € Ce,.- The smooth min-entropy is evaluated on the
classical quantum state wy, z which is obtained from w4p
by taking a purification w g and applying the discretized
quadrature measurement on the A system.

We employ the quantum equipartition property of the
smooth min-entropy [25] for infinite-dimensional systems
[19], stating that for large n, HE. (X4|E), e approaches
the conditional von Neumann entropy H(X4|E),. More
precisely, we have

1.00
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£
~ 0.10
= 0.05
E
z
2 0.02

107 108 10° 101 10"
Number of signals N

FIG. 1 (color online). Key rate £/N in bits per signal against
coherent attacks for an input squeezing of 11 dB, antisqueezing
of 16 dB and additional symmetric losses of 0% (solid line), 4%
(dashed line) and 6% (dash-dotted line). We assumed an error
correction efficiency of 0.95 and set €, = €, = 107°.
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FIG. 2 (color online). Key rate £/N in bits per signal against
collective Gaussian attacks for losses of 0% (solid line), 15%
(dashed line), 25% (dash-dotted line). Squeezing strength, error
correction efficiency, and security parameters are chosen as in
the case of coherent attacks.

HE o (XAlE) yor = nH(X4|E),, — /A, 4)

where A is a function of €, 6 and « ([21], VI). Using that
the minimum of H(X4|E), over all states with a fixed
covariance matrix I'4p is attained for the corresponding
Gaussian state w5 ([21], VII and [26]), we get the follow-
ing formula for the key length.

For parameters k, a, &, an (€, + €,.)-secret key of
length

n_inf H(X,|E),r — /nA — €gc — O(logi>
r chpe €€
can be extracted assuming collective attacks.

To evaluate this finite-key bound numerically, we need
explicit expressions for the confidence sets. For this, we
use results from [9], which assumes collective Gaussian
attacks. We computed the key rates €/N in Fig. 2 for the
same squeezing strength and loss model as in the case of
coherent attacks. Note that since the key rate is in bits per
signal, it can be larger than 1. The detailed calculation of
H(X4|E),,r can be found in ([21], VIII). For simplicity, we
assumed a constant binning of & over the entire outcome
range (o = 0). In contrast to the case of coherent attacks,
reverse reconciliation is possible and can increase the key
rate essentially if asymmetric losses are assumed (which
we do not discuss here). In Fig. 3, we plotted the key rate
for coherent and collective Gaussian attacks in dependence
of the losses, and compare them with the Devetak-Winter
rate [7,8] for perfect error correction.

Discussion and outlook.—We provided a finite-key
security analysis for a CV QKD protocol and obtain a
composable secure positive key rate against coherent
attacks for experimentally feasible parameters. We com-
pare it with key rates computed under the assumption of
collective Gaussian attacks and find that they are signifi-
cantly higher. This is because the applied entropic uncer-
tainty relation, Eq. (3), is not tight for the considered state,
which might be improved by a state dependent version
thereof. Our results for collective attacks suggest that an

2.00
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0.10
0.05

Key rate 1/N (bits/signal)

0.02

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Number of signals N

FIG. 3 (color online). Key rate €/N versus losses secure
against coherent attacks at N = 10° (dash-dotted line), collective
Gaussian attacks at N = 10° (dashed line), and the Devetak-
Winter rate [7] for perfect information reconciliation (solid line).
Squeezing strength, error correction efficiency, and security
parameters are chosen as in the case of coherent attacks.

extension of the postselection technique to infinite-
dimensional systems (see Ref. [27] for a proposal) is
desirable. In order to relax the assumptions in the security
proof against coherent attacks, it would be interesting to
study the overlap for more realistic models of the quad-
rature measurements, which may include a continuum of
modes. Moreover, our arguments might also be applicable
to other CV QKD schemes [28,29].
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