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A quantum spline is a smooth curve parametrized by time in the space of unitary transformations,

whose associated orbit on the space of pure states traverses a designated set of quantum states at

designated times, such that the trace norm of the time rate of change of the associated Hamiltonian is

minimized. The solution to the quantum spline problem is obtained, and is applied in an example that

illustrates quantum control of coherent states. An efficient numerical scheme for computing quantum

splines is discussed and implemented in the examples.
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Controlling the evolution of the unitary transformations
that generate quantum dynamics is vital in quantum infor-
mation processing. There is a substantial volume of litera-
ture devoted to the investigation of the many aspects of
quantum control [1]. The objective of quantum control is
the unitary transformation of one quantum state, pure or
mixed, into another one, subject to certain criteria. For
example, one may wish to transform a given quantum state
jc i into another state j�i unitarily in the shortest possible
time, with finite energy resource [2–4]. When only the
initial and final states are involved, many time-independent
Hamiltonians are available that achieve the unitary evolu-
tion jc i ! j�i, and we simply need to find one that is
optimal. However, transforming a given quantum state
jc i along a path that traverses through a sequence of
designated quantum states jc i ! j�1i ! j�2i ! � � � !
j�mi cannot be achieved by a time-independent
Hamiltonian. To realize this chain of transformations in
the shortest possible time, one chooses the optimal
Hamiltonian Hj for each interval j�ji ! j�jþ1i [3,4],

and switches the Hamiltonian from Hj to Hjþ1 when the

state has reached j�jþ1i. However, instantaneous switching
of theHamiltonian is in general not experimentally feasible.

In the present Letter, we consider the following quantum
control problem: Let a set of quantum states
j�1i; j�2i; . . . ; j�mi and a set of times t1; t2; . . . ; tm be
given. Starting from an initial state jc 0i at time t0 ¼ 0,
find a time-dependent Hamiltonian HðtÞ such that the
evolution path jc ti passes arbitrarily close to j�ji at

time t ¼ tj for all j ¼ 1; . . . ; m, and such that the change

in the Hamiltonian, in a sense defined below, is minimized.
The solution to this problem will generate a continuous
curve in the space of quantum states that interpolates
through the designated states, just as a spline curve inter-
polates through a given set of data points. We thus refer to
this solution as a quantum spline.

There is a difference between a classical spline curve
and a quantum spline. In the classical context the solution
curve passes through a given set of points, whereas in the

quantum context, a curve on the space of pure states in
itself has no operational meaning. Thus, instead of finding
a curve in the space of pure states where the designated
states lie, we must find a time-dependent curve in the space
of Hamiltonians that in turn will generate the curve in the
unitary transformation group needed to produce an optimal
trajectory. In other words, we shall seek a curve in the
associated Lie algebra, which of course is equivalent to the

space of Hamiltonians, up to multiplication by i ¼ ffiffiffiffiffiffiffi�1
p

.
Our approach involves variational calculus in the Lie

algebra of skew-Hermitian matrices, with constraints that
take values in the unitary group. In addition, since our
optimality condition for quantum splines involves the
time derivative of iHðtÞ, we shall make use of the tech-
niques developed recently for the higher-order calculus of
variations on Lie groups and their algebras [5,6]. By ex-
tending these results we are able to (a) derive the Euler-
Lagrange equations (5) and (9) below that solve quantum
spline problems, and (b) devise an efficient discretization
scheme to numerically implement the solution. An ex-
ample of such a solution for a two-level quantum system
is sketched in Fig. 1. As an application, we illustrate how
the results transform a quantum state along a path that lies
entirely on the coherent-state subspace.
The optimal curve HðtÞ that solves the quantum spline

problem is the minimizer of a ‘‘cost functional’’ (action)
consisting of two terms: The first term measures the overall
change in the Hamiltonian during the evolution. For this
purpose we shall consider the trace norm; i.e., for a pair of
trace-free skew-Hermitian matrices A and B we define
their inner product by

hA; Bi ¼ �2 trðABÞ; (1)

where the factor�2 is purely conventional. Thus, if H is a
time-dependent Hamiltonian and _H its time derivative, the
instantaneous penalty arising from changing the
Hamiltonian is given by 1

2 hi _H; i _Hi ¼ trð _H2Þ. The second

term penalizes the ‘‘mismatch’’ between the state jc tji at
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time tj and the target state j�ji. For this purpose we shall
use the standard geodesic distance

Dðc ; �Þ ¼ 2 arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hc j�ih�jc i
hc jc ih�j�i

s
(2)

for a pair of states jc i and j�i. Writing UðtÞ for the
parametric family of unitary operators generated by HðtÞ
so that jc tji ¼ UðtjÞjc 0i, the mismatch penalty is chosen

to be 1
2D

2ðUðtjÞc 0; �jÞ=�2, where the tolerance �> 0 is a

tunable parameter so that the penalty is high when � is
small, and the factor of a half is purely conventional.

The action, of course, must be minimized subject to the
constraint that the dynamical evolution of the state is
unitary. That is, U must satisfy the Schrödinger equation
_U ¼ �iHU, in units @ ¼ 1. Therefore, given an initial
state jc 0i at time t0 ¼ 0, a set of target states
j�1i; . . . ; j�mi at times t1; . . . ; tm, and an initial
Hamiltonian Hð0Þ ¼ H0, we wish to find the minimizer of

J ¼
Z tm

t0

�
1

2
hi _H; i _Hi þ hM; _UU�1 þ iHi

�
dt

þ 1

2�2

Xm
j¼1

D2ðUðtjÞc 0; �jÞ; (3)

where the minimization is over curves UðtÞ 2 SUðnþ 1Þ
and iHðtÞ;MðtÞ 2 suðnþ 1Þ. Additionally, we require
smoothness of these curves on open intervals ðtj; tjþ1Þ for
j ¼ 0; . . . ; m� 1; Uð0Þ ¼ 1, and the continuity of UðtÞ
and HðtÞ is assumed everywhere. The curve MðtÞ acts as
a Lagrange multiplier enforcing the kinematic constraint.
Before we proceed to vary the action J let us comment

on the choice of the initial Hamiltonian H0. We let H0 be
such that the trajectory e�iH0tjc 0i corresponds to the
geodesic curve on the space of pure states joining jc 0i
and j�1i; the construction of such a Hamiltonian can be
found in [4]. Intuitively, since the first target time t1 is
fixed, this choice generates the most direct traverse jc 0i !
j�1i, hence requiring least change in the Hamiltonian at
initial times t � t1.
The Euler-Lagrange equations governing stationary

points of (3) are obtained by taking the variation of J
and requiring �J ¼ 0. Writing A ¼ ð�UÞU�1 we have

�J ¼
Z tm

t0

ðhi _H; i� _Hi þ hM; _A� ½ _UU�1; A� þ i�Hi þ h�M; _UU�1 þ iHiÞdtþ 1

2�2

Xm
j¼1

�D2ðc tj ; �jÞ

¼
Z tm

t0

ðhM� i €H; i�Hi þ h� _Mþ ½ _UU�1;M�; Ai þ h�M; _UU�1 þ iHiÞdtþ 1

2�2

Xm
j¼1

�D2ðc tj ; �jÞ

þ Xm�1

j¼1

½h�MðtjÞ; AðtjÞi þ hi� _HðtjÞ; i�HðtjÞi� þ hMðtmÞ; AðtmÞi þ hi _HðtmÞ; i�HðtmÞi; (4)

where in the second step we have integrated by parts, and
used the notations �MðtjÞ ¼ Mðt�j Þ �Mðtþj Þ and
� _HðtjÞ ¼ _Hðt�j Þ � _Hðtþj Þ, with Mðtþi Þ ¼ limt#tiMðtÞ
and Mðt�i Þ ¼ limt"tiMðtÞ, and similarly for _Hðt�j Þ. It
follows from (4) that on the open intervals (tj, tjþ1),
j ¼ 0; . . . ; m� 1, the following equations hold:

i €H�M¼ 0; _Mþ½M; _UU�1� ¼ 0; _UU�1þ iH¼ 0:

(5)

Additionally, at the nodes t ¼ tj, we require matching
conditions. To work them out, let us calculate the variation

�D2 ¼ 2D�D appearing in (4). From the definition (2) and
the relation

hc je�"Aj�ih�je"Ajc i
hc jc ih�j�i

� hc jð1� "AÞj�ih�jð1þ "AÞjc i
hc jc ih�j�i

¼ hc j�ih�jc i
hc jc ih�j�i þ

2<½hc j�ih�jAjc i�
h�j�ihc jc i "þOð"2Þ; (6)

which holds for any A ¼ �Ay, we find, bearing in mind
that if D ¼ 2 arccosð ffiffiffi

x
p Þ then dD=dx ¼ �2= sinðDÞ,

FIG. 1 (color online). A quantum spline for a two-level sys-
tem. The lower-left initial state and the targets are represented by
black dots. The variational formulation of the problem requires
us to minimize a functional that measures both the cost related to
the change of the Hamiltonian, and the amount of mismatch
between the trajectory and the target points.
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�D ¼ d

d"
Dðe"Ac ; �Þ

��������"¼0
¼ �4<½hc j�ih�jAjc i�

sinðDÞh�j�ihc jc i :

(7)

From (7), and writing Dj ¼ Dðc tj ; �jÞ, we deduce that
�D2

j ¼ 2DjhFj; AðtjÞi, where

Fj ¼
hc tj j�jijc tjih�jj � h�jjc tjij�jihc tj j

sinðDjÞh�jj�jihc tj jc tji
: (8)

The relevant matching conditions at the nodes are therefore
given by:

_Hðtþj Þ � _Hðt�j Þ ¼ 0; Mðtþj Þ �Mðt�j Þ ¼ DjFj=�
2;

(9)

whereas we require _HðtmÞ ¼ 0 andMðtmÞþDmFm=�
2¼0

at the terminal point. Quantum spline problems are there-
fore solved by finding a solution to Eqs. (5) and (9) that
satisfies, in addition, the terminal conditions at tm. On open
time intervals (ti, tiþ1) equation (5) yields

H
::: þ i½H; €H� ¼ 0: (10)

This is the right-reduced equation for the so-called
Riemannian cubics on SUðnþ 1Þ with respect to the bi-
invariant Riemannian metric induced by the inner product
(1). That is, UðtÞ is a Riemannian cubic on the open time
intervals (ti, tiþ1). Here, by a Riemannian cubic we mean a
solution to a certain fourth-order equation for a curve on a
Riemannian manifold (see Ref. [7] for further details). The
node conditions (9) imply that UðtÞ is a Riemannian cubic
spline, a twice continuously differentiable curve that is
composed of a series of cubics.

We remark on the important structure of the Lagrange
multiplier MðtÞ implied by the equations of motion that
makes it sufficient to consider a subspace of suðnþ 1Þ
when searching for the optimal initial value Mð0Þ. Let us
denote by P c the totality of tracefree skew-Hermitian

generators of unitary motions that leave the state jc i
invariant, and P?

c its complement with respect to the inner

product (1). Then, we have the following Lemma: MðtÞ 2
P?

c t
[this holds because for all j, DjFj 2 P?

c tj
, and from

(5), MðtÞt2ðtj;tjþ1Þ ¼ AdUðtÞUðtjþ1Þ�1Mðt�jþ1Þ]. This result is

significant, because the search for the optimal Mð0Þ can
be restricted to the 2n-dimensional subspace P?

c 0
of the

nðnþ 2Þ-dimensional Lie algebra suðnþ 1Þ.
Before we indicate the process for the implementation of

the optimization scheme, let us show some results first.
Consider a two-level system (n ¼ 1). We can think of this
system as a spin- 12 particle immersed in a magnetic field. If

nðtÞ is the unit direction of the field at time t, the
Hamiltonian of the system can be written in the form

HðtÞ ¼ !ðtÞ� � nðtÞ, where !ðtÞ is the field strength. In
this case the state space is just the Bloch sphere S2. We
have implemented the optimization for a set of target states
on S2, an initial state jc 0i, and a set of times. Using the
resulting Hamiltonian we have generated the dynamics of
the state, as illustrated in Fig. 1. In Fig. 2 we have sketched
the effect of choosing different tolerance levels. When the
value of � is reduced, the resulting orbit jc ti traverses
closer to the vicinities of the target states fj�jig. From (3),

one sees that this may be realized at the expense of varying
the Hamiltonian HðtÞ more rapidly. This effect can be
visualized in the case of a two-level system, since HðtÞ is
characterized by the the scalar field strength !ðtÞ and the
unit vector nðtÞ 2 R3. In Fig. 3 we have plotted the

FIG. 2 (color online). Orbits on the state space generated by
the solution to the quantum spline problem. The black dots
indicate the initial (lower left) and the target points. The optimal
trajectories are shown for two different values of the tolerance
parameter: � ¼ 0:04 and � ¼ 0:01. Lower values of the toler-
ance parameter translate, through the cost functional J , into a
stronger penalty on the mismatch.

FIG. 3 (color online). The quantum spline HðtÞ. Hamiltonians
that generate the dynamical trajectories in Fig. 2. The top row
shows the orbits of the endpoint of the rotation axis nðtÞ. The
bottom row shows the field strength!ðtÞ. These images illustrate
the fact that as the value of � is decreased, the amount of change
in the optimal Hamiltonian HðtÞ increases.
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endpoint of the unit vector nðtÞ on a sphere, and the values
of !ðtÞ, for different choices of �. These plots show that
both nðtÞ and !ðtÞ vary more rapidly at smaller tolerance
level (i.e., smaller �).

Another example we consider here is a controlled mo-
tion of a quantum state on the coherent-state subspace of
the state space. Consider SUðnþ 1Þ coherent states [8,9] in
arbitrary dimensions. These coherent states can be gener-
ated by taking symmetric tensor products of ‘‘single-
particle’’states. In the context of quantum information
theory, these states correspond to totally disentangled
states inside the symmetric subspace of the Hilbert space
of the combined system. Each coherent state thus corre-
sponds to the image of a map, known as the Veronese
embedding [10,11], of a pure state. Therefore, given a set
of points on a coherent-state space we identify them with
states on a single-particle Hilbert space, solve the quantum
spline problem as indicated above, and map the result back
to the larger Hilbert space. In particular, the coherent
quantum spline is generated by the symmetric tensor prod-
uct Hamiltonian �sHðtÞ. This elementary procedure works
because (a) the Veronese embedding commutes with the
action of SUðnþ 1Þ, and (b) the natural metrics on the
spaces of coherent states are scalar multiples of the metric
(2) used here [10].

Next we discuss a numerical approach for finding a local
minimum of the cost functional (3). The search can be
restricted to solutions of (5) and (9), which are encoded by
their initial conditions Mð0Þ and _Hð0Þ. We can therefore
regard (3) as a function of these initial conditions, and
perform a descent algorithm on that function. The terminal
conditions at tm can then be used to test whether we have
arrived at a local minimum.

For a numerical implementation we can discretize the
equations of motion (5) and (9), and find the approximate
gradient of J ; alternatively, we can introduce an approxi-
mation J d of J defined on a discrete path space, and take
its variation, which yields a set of discrete equations of
motion. Here we follow the latter method, which permits
the use of adjoint equations [6] for an efficient calculation
of the exact gradient ofJ d. This method is highly effective
in dealing with higher-dimensional (n > 1) systems.
Moreover, in this method discrete critical curves of J d

satisfy a version of the terminal conditions at t ¼ tm ex-
actly, and this leads to a precise method for testing con-
vergence. In addition, such curves fulfil the conditions for
the above-stated Lemma on their discrete time domain,
which can be exploited by restricting the search for the
optimal initial value of M to P?

c 0
.

The implementation will make use of the Cayley map
�: suðnþ 1Þ ! SUðnþ 1Þ, which approximates the Lie
exponential according to X � ð1� X=2Þ�1ð1þ X=2Þ.
We will also need the left-trivialized differential dl:
dl�XY ¼ ðd=d"Þ�ðX þ "YÞ�ðXÞ�1j"¼0, which is given
by ð1� X=2Þ�1Yð1þ X=2Þ�1. We discretize the time

interval tm � t0 into N steps such that ðtm � t0Þ=N ¼ h,
and we let t� ¼ t0 þ�h for � ¼ 0; . . . ; N. For simplicity,
we assume that the nodal times ftjgj¼0;...;m coincide with

some of the discrete time steps tnj ¼ t0 þ njh, where

n0 ¼ 0 and nm ¼ N. To obtain a discrete version of the
cost functional, we approximate the time derivative�i _H of
the generator by the discrete variables fL�g. The complete

set of discrete variables is therefore (U�, iH�, M�, L�),

with� ¼ 0; . . . ; N. Writing�� ¼ ��njDjFj=�
2 and mak-

ing use of the Euler method of [6], we obtain the following
set of discrete equations of motion for � ¼ 0; . . . ; N � 1:

M�þ1 ¼ ðdl��1
ihH�þ1

Þðdl��ihH�þ1
ÞðM� þ��Þ

L�þ1 ¼ L� � hðdl�ihH�þ1
ÞM�þ1

U�þ1 ¼ �ð�ihH�þ1ÞU�;

H�þ1 ¼ H� þ ihL�:

(11)

These equations can be integrated for given initial values
M0 and L0 (recall that U0 ¼ 1 and H0 are prescribed). The
terminal conditions are LN ¼ 0 and MN þ�N ¼ 0. The
discrete cost functional J d in terms of initial conditions
(M0, L0) is

J d ¼ XN�1

�¼0

h

2
hL�; L�i þ 1

2�2

Xm
j¼1

D2ðUnjc 0; �jÞ; (12)

whereby the equations of motion (11) are implied.
A local minimum can be found by a gradient descent

method, which requires the computation of the gradient of
J d. The estimation of the gradient via finite-difference
methods requires the repeated forward integration of the
system of equations (11). The number of forward integra-
tions increases with the number of dimensions of the Lie
algebra (n2 to leading order). Such estimation procedures
thus quickly become unfeasible for higher-dimensional
systems. This difficulty can be avoided by using the method
of adjoint equations, which can be readily implemented
for the discretization (11) and (12), presented here (see
Supplemental Material [12] for details, and Ref. [13] for a
numerical code). Then, the exact gradient is obtained at the
cost of integrating twice (once forward, once backward) a
system of equations of the same complexity as (11). This
allows for an efficient treatment of the quantum spline
problem when n > 1.
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