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We derive a hydrodynamic description of metric-free active matter: starting from self-propelled

particles aligning with neighbors defined by ‘‘topological’’ rules, not metric zones—a situation advocated

recently to be relevant for bird flocks, fish schools, and crowds—we use a kinetic approach to obtain well-

controlled nonlinear field equations. We show that the density-independent collision rate per particle

characteristic of topological interactions suppresses the linear instability of the homogeneous ordered

phase and the nonlinear density segregation generically present near threshold in metric models, in

agreement with microscopic simulations.
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Collective motion is a central theme in the emerging
field of active matter studies [1]. For physicists, the interest
largely lies in the nontrivial cases where the emergence of
collective motion can be seen as an instance of spontane-
ous symmetry breaking out of equilibrium: without lead-
ers, guiding external fields, or confinement by boundaries,
large groups inside of which an ‘‘individual’’ can only
perceive local neighbors are able to move coherently.
After this was realized in the seminal papers of Vicsek
et al. [2] and Toner and Tu [3], much progress has been
recorded in the physics community [1,4], alongside con-
tinuing modeling work in ethology and biology [5,6].

Most models consist of self-propelled particles interact-
ing with neighbors defined to be those particles within
some finite distance [7]. Among those ‘‘metric models,’’
that introduced by Vicsek et al. [2] is arguably the simplest:
in the presence of noise, point particles move at constant
speed, aligning ferromagnetically with others currently
within unit distance. The study of the Vicsek model has
revealed rather unexpected behavior. Of particular impor-
tance in the following is the emergence of phase segrega-
tion, under the form of high-density high-order traveling
bands [8], in a large part of the orientationally ordered
phase bordering the onset of collective motion, relegating
further the spatially homogeneous fluctuating phase treated
by Toner and Tu. Similar observations of density segrega-
tion were made for important variants of the Vicsek
model, such as polar particles with nematic alignment [9]
(self-propelled rods) or the active nematics model of
Refs. [10,11]. The genericity of these observations has been
confirmed, in the Vicsek case, by the derivation and analysis
of continuous field equations [12,13] (see also Refs. [14,15]).
It was shown in particular that the homogeneous ordered

solution is linearly unstable near onset, and that solitary
wave structures akin to the traveling bands, arise at the
nonlinear level.
Even though metric interaction zones are certainly of

value in cases such as shaken granular media [16,17] and
motility assays [18,19] where alignment arises mostly from
inelastic collisions, it has been argued recently [20–22] that
they are not realistic in the context of higher organisms such
as birds, fish, or pedestrians, whose navigation decisions are
likely to rely on interactions with neighbors defined using
metric-free, ‘‘topological’’ criteria. Statistical analysis of
flocks of hundreds to a few thousand of individuals revealed
that a typical starling interacts mostly with its 7 or 8 closest
neighbors, regardless of the flock density [20]. The realistic,
data-based, model of pedestrian motion developed by
Moussaid et al. relies on the ‘‘angular perception land-
scape’’ formed by neighbors screening out others [21].
At a more theoretical level, the study of the Vicsek model

with Voronoi neighbors [23] (those whose associated
Voronoi cells form the first shell around the central cell)
has shown that metric-free interactions are relevant at the
collective scale: in particular, the traveling bands mentioned
above disappear, leaving only a Toner-Tu-like phase. Below,
we show that the introduction of Voronoi neighbors sup-
presses the density-segregated phase in other variants of
the Vicsek model. In spite of the recognized importance of
metric-free interactions, no continuous field equations de-
scribing the above models are available which would help
put the above findings on firmer theoretical ground.
In this Letter, starting from Vicsek-style microscopic

models with Voronoi neighbors, we derive nonlinear field
equations for active matter with metric-free interactions
using a kinetic approach well controlled near the onset of
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orientational order. We show that the density-independent
collision rate per particle characteristic of these systems
suppresses the linear instability of the homogeneous or-
dered phase and the nonlinear density segregation in agree-
ment with microscopic simulations. We finally discuss the
consequences of our findings for the relevance of metric-
free interactions.

Let us first stress that with metric-free interactions,
say with Voronoi neighbors, the tenet of the Boltzmann
equation approach [24]—the assumption that the system is
dilute enough so that it is dominated by binary collisions—
is never justified since, after all, a particle is constantly
interacting with almost the same number of neighbors.
Here, instead, we introduce an effective interaction rate
per unit time, which renders binary interactions dominant
in the small rate limit. Apart from the mathematical con-
venience, it is not unrealistic to think that the stimulus or
response function of superior animals—due to the physical
constraints induced by the information processing in
various cognitive layers [25]—does not treat visual cues
continuously.

Our starting point is thus a Vicsek-style model in which
information is processed according to some stochastic
rates: N point particles move at a constant speed v0 on a
L� L torus; their heading � is submitted to two different
dynamical mechanisms, ‘‘self-diffusion’’ and aligning
binary ‘‘collisions.’’ In self-diffusion, � is changed into
�0 ¼ �þ �with a probability � per unit time, where � is a
random variable drawn from a symmetric distribution
P�ð�Þ of variance �2. Aligning ‘‘collisions’’ occur at a
rate �0 per unit time with each Voronoi neighbor. In
the small �0 limit, binary interactions dominate and take
place with a rate � � n2�0, where n2 is the typical number
of neighbors. In such collisions � is changed to �0 ¼
�ð�; �nÞ þ � where �n is the heading of the chosen neigh-
bor and the noise � is also drawn, for simplicity, from
P�ð�Þ. Isotropy is assumed, namely �ð�1þ�;�2þ�Þ¼
�ð�1;�2Þþ�½2��. For the case of ferromagnetic align-
ment treated in detail below, �ð�1; �2Þ � argðei�1 þ ei�2Þ.
Simulations of our stochastic rule indicate that it shares the
same collective properties as the system studied in
Ref. [23] (not shown).

The evolution of the one-particle phase-space distribution
fðr; �; tÞ (defined over some suitable coarse-grained scales)
is governed by the Boltzmann equation

@tfðr;�;tÞþv0eð�Þ �rfðr;�;tÞ¼ Idiff½f�þIcoll½f�; (1)

where eð�Þ is the unit vector along �. The self-diffusion
integral is

Idiff½f� ¼ ��fð�Þ þ �
Z �

��
d�0

Z 1

�1
d�P�ð�Þ

� �2�ð�0 � �þ �Þfð�0Þ; (2)

where �2� is a generalized Dirac delta function imposing
that the argument is equal to zero modulo 2�. In the small

rate limit, orientations are decorrelated between collisions
(‘‘molecular chaos hypothesis’’), and one can write

Icoll½f� ¼ ��fð�Þ þ �

	ðr; tÞ
Z �

��
d�1

Z �

��
d�2

�
Z 1

�1
d�P�ð�Þfð�1Þfð�2Þ

� �2�ð�ð�1; �2Þ � �þ �Þ: (3)

The main difference with the metric case treated in Ref. [12]
is the ‘‘collision kernel,’’ which is independent from relative
angles and inversely proportional to the local density

	ðr; tÞ ¼
Z �

��
fðr; �; tÞd�: (4)

Note that, in agreement with the basic properties of models
with metric-free interactions, Eq. (1), together with the
definitions of Eqs. (2)–(4), is left unchanged by an arbitrary
normalization of f (and thus of 	) and thus does not depend
on the global density 	0 ¼ N=L2. Furthermore, a rescaling
of time and space allows us to set � ¼ v0 ¼ 1, a normal-
ization we adopt in the following.
Equations for the hydrodynamic fields are obtained by

expanding fðr; �; tÞ in Fourier series, yielding the Fourier

modes f̂kðr; tÞ ¼
R
�
�� d�fðr; �; tÞeik�, where f̂k and f̂�k

are complex conjugates, f̂0 ¼ 	, and the real and imagi-

nary parts of f̂1 are the components of the momentum
vector w ¼ 	P with P the polar order parameter field.
Using these Fourier modes, the Boltzmann equation
Eq. (1) yields an infinite hierarchy:

@tf̂kþ1

2
ð5f̂k�1þ5�f̂kþ1Þ

¼ðP̂k�1��Þf̂kþ�

	
P̂k

X1
q¼�1

Jkqf̂qf̂k�q; (5)

where the complex operators 5 ¼ @x þ i@y and 5� ¼
@x � i@y have been used, the binary collision rate �

is now expressed in the rescaled units, P̂k ¼R1
�1 d�P�ð�Þeik� is the Fourier transform of P�, and

Jkq is an integral depending on the alignment rule �.

Below, we specialize to the case of ferromagnetic align-
ment, for which

Jkq ¼ 1

2�

Z �

��
d� cos½ðq� k=2Þ��: (6)

For k ¼ 0 the rhs of Eq. (5) vanishes and one recovers the
continuity equation

@t	þr � w ¼ 0: (7)

To truncate and close this hierarchy, we assume the follow-
ing scaling structure, valid near onset of polar order,
assuming, in a Ginzburg-Landau-like approach, small
and slow variations of fields

	�	0�
; f̂k�
jkj; 5�
; @t�
: (8)
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Note that the scaling of space and time is in line with the
propagative structure of our system [26]. The lowest order
yielding nontrivial, well-behaved equations is 
3: keeping

only terms up to this order, equations for f̂k>2 identically

vanish, while f̂2, being slaved to f̂1, allows us to close

the f̂1 equation which reads, in terms of the momentum
field w:

@twþ �ðw � rÞw ¼ � 1

2
r	þ �

2
rw2 þ ð� �w2Þw

þ �r2w� �ðr � wÞw: (9)

Apart from some higher order terms we have discarded
here, this equation has the same form as the one derived in
Ref. [12] for metric interactions, but with different trans-
port coefficients:

¼
�
4�

�
þ 1

�
P̂1 � ð1þ�Þ; � ¼ ½4ð�þ 1� P̂2Þ��1;

� ¼ �
4�

	

�
P̂2 � 2

3�
P̂1

�
; �¼ �

4�

	

�
P̂2 þ 2

3�
P̂1

�
;

�¼ �

�
4�

	

�
2 1

3�
P̂1P̂2: (10)

Note first that, contrary to the metric case, the coefficient
of the linear term does not depend on the local density 	;
coefficients of the nonlinear terms depend on density to
compensate the density dependence of w. Note further that

�, �, and � are positive since 0< P̂k < 1, so that, in
particular, the nonlinear cubic term is always stabilizing.
For an easier discussion, we consider now the Gaussian

distribution P�ð�Þ ¼ 1
�
ffiffiffiffiffi
2�

p exp½� �2

2�2� for which P̂k ¼
exp½�k2�2=2�. Then  is negative for large � (where
the trivial w ¼ 0 solution is stable with respect to linear
perturbations), and changes sign for �c defined by [27]

�2
c ¼ 2 ln

�
1þ 4�=�

1þ �

�
: (11)

For �< �c, the nontrivial homogeneous solution 	 ¼ 	0,

w ¼ w1 � e
ffiffiffiffiffiffiffiffiffiffi
=�

p
(where e is an arbitrary unit vector)

exists and is stable to homogeneous perturbations.
We now focus on the linear stability ofw1 with respect to

an arbitrary wave vector q. Because we want to discuss
differences between the metric and metric-free cases later,
we keep a formal 	 dependence of the linear transport
coefficient. Linearization around w1 yields

@t�	 ¼ �r � �w
@t�w ¼ ��ðw1 � rÞ�w� 1

2r�	þ �r2�w

þ �rðw1 � �wÞ � �w1ðr � �wÞ
� 2�w1ðw1 � �wÞ þ ð0 � �0w2

1Þw1�	; (12)

where primes indicate derivation with respect to 	. Using
the ansatz ð�	ðr;tÞ;�wðr;tÞÞ¼expðstþiq�rÞð�	q;�wqÞ
allows us to recast Eq. (12) as an eigenvalue problem for s.
We have solved numerically this cubic problem for the

metric-free case using the coefficients of Eq. (10) and
Gaussian noise in the full (�, �) parameter plane. The
resulting stability diagram, presented in Fig. 1, shows that,
contrary to the metric case, the homogeneous ordered
phase is stable near onset. As in the metric case [28], there
exists an instability region to oblique wave vectors of large
modulus rather far from the transition line. Given that
microscopic simulations show no sign of similar instabil-
ities, we believe that the existence of this region, situated
away from the validity domain of our approximations, is an
artifact of our truncation ansatz.
At the nonlinear level, we performed numerical simula-

tions [29] of Eq. (9) (again with the coefficients of Eq. (10)
and Gaussian noise) starting from initial conditions with
large variations of both 	 andw. With parameters� and�2

in the ordered stable region of Fig. 1, we always observed
relaxation towards the linearly stable homogeneous solu-
tionw1, albeit after typically long transients. Starting in the
unstable region, the solution blows up in finite time, signal-
ing that indeed our equation is ill behaved when considered
too far away from onset.
The stabilization of the near-threshold region by metric-

free interactions can be directly traced back to the absence
of 	 dependence of , in agreement with remarks in
Refs. [12,30] where the long-wavelength instability of w1

was linked to 0 > 0. In the long-wavelength limit
q ¼ jqj 	 1, the eigenvalue problem can be solved ana-
lytically with relative ease. The growth rate s is the solution
of the cubic equation

s3 þ �2s
2 þ �1sþ �0 ¼ 0; (13)

where the coefficients, to lowest orders in q, are given by
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FIG. 1 (color online). Continuous theory for self-propelled
particles aligning ferromagnetically [Eqs. (7) and (9) with the
coefficients of Eq. (10), Gaussian noise]. (a) Phase diagram in
the (�, �2) plane. The solid line marks the order-disorder
transition. The homogeneous ordered solution w1 exists below
this line and is linearly stable above the colored linear instability
region. The color (or gray) scale (in radians) indicates the most
unstable wave vector direction �. (b) Modulus q of the most
unstable wave vector (green full line) and the real part of its
corresponding eigenvalue sþ (dashed red line) as a function of
�2 at � ¼ 2.
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�2 ¼ 2þ 2iq

ffiffiffiffi


�

r
� cos�þ 2q2�

�1 ¼ iq

ffiffiffiffi


�

r
cos�

�
2�þ

�
0 �

�0

�

��

þ q2
�
2�þ 1

2
�

�
ð�2cos2�þ �2sin2�Þ

�

�0 ¼ q2
��

�0

�2
�0

�

�
ð�cos2�þ �sin2�Þ þ sin2��

þ iq3
ffiffiffiffi


�

r
cos�

��
0 �

�0

�

�
�þ �

2

�
(14)

and � is the angle between q and w1 (which has been
chosen parallel to the abscissa). Near threshold, where our
truncation is legitimate and � 
2, two eigenvalues are
always stable and linear stability is controlled by the
dominant solution real part

sþ � q2cos2�

8

�ð0Þ2
�

� hð�Þ
�
þO

�
q20



�
(15)

with hð0Þ ¼ 2 and hð�Þ ¼ 1 otherwise [31]. This expres-
sion immediately shows that sþ < 0 in the metric-free case
where 0 ¼ 0, confirming the stability of the homogene-
ous ordered solution w1. This stabilizing effect can be
ultimately traced back to the (negative) pressure term
�r	 appearing in Eq. (9). Conversely, in the metric case
for which � 0þ near threshold, sþ is always positive,
yielding the generic long-wavelength instability leading to
density segregation in metric models.

These results rest on the independence of the linear
coefficient  on 	, a direct consequence of the fact that
the interaction rate per particle in topological models is
fixed only by geometrical constraints and does not grow
with local density. This property actually holds for any
metric-free system: all the linear coefficientsk appearing

in the equations for f̂k read

k ¼ P̂k � 1� �þ �P̂kðJkk þ Jk0Þ (16)

and are thus independent of 	. Therefore, the lack of near-
threshold spontaneous segregation extends to the other
known classes of ‘‘dry’’ active matter [32]: we have in
particular worked out the case of polar particles with ne-
matic alignment (‘‘self-propelled rods’’) for which
�ð�1;�2Þ¼ argðei�1 þsign½cosð�1��2Þ�ei�2Þ. While full
details will be given in Ref. [33], we only sketch here the
salient points. Let us first recall that with nematic align-
ment, the metric model studied at the microscopic level
in [9] shows global nematic order. In a large region of
parameter space bordering onset, order is segregated to a
high-density stationary band oriented along it. We have
studied numerically the metric-free version of that
Vicsek-style model with Voronoi neighbors. As for its
ferromagnetic counterpart, no segregation in bands is ob-
served anymore, and the transition to nematic order is then
continuous, as testified by finite-size scaling results (Fig. 2).

These properties are well captured, both in the metric and
metric-free case, by a controlled hydrodynamic approach of
the type presented here, which we only sketch below [33].
The nematic symmetry of the problem requires us to consider
three hydrodynamic fields [15], corresponding to the modes

k ¼ 0, 1, 2 in Eq. (5), with f̂2 coding for the nematic tensor
field	Q. We have performed the analysis of the 5� 5 linear
problem expressing the stability of the homogeneous nemati-
cally ordered solution (w ¼ 0, 	Q ¼ const) appearing at
onset in both the metric and nonmetric cases [33]. Whereas
the metric case shows a long-wavelength, transversal insta-
bility of the homogeneous ordered solution near onset, this
solution is linearly stable in the metric-free case. Again, this
difference can be traced back to the 	 dependence of the
linear coefficients k. At the nonlinear level, simulations
indicate that the homogeneous ordered solution is a global
attractor in the metric-free case.
Our analysis can also be extended to diffusive active

matter such as the driven granular rods model (‘‘active
nematics’’) studied in Refs. [10,11] which, for metric inter-
actions, also shows near-threshold phase segregation [10,34].
Simulations of the metric-free microscopic version (with
Voronoi neighbors) show no such segregation. In a kinetic
approach, because active nematic particlesmove by nonequi-
librium diffusive currents rather than by ballistic motion, the
Boltzmann equation has to be replaced by a more general
master equation. But it is nevertheless possible to derive a
continuous theory which, in the metric-free case, yields a
homogeneous ordered phase stable near onset for essentially
the same reasons as in the cases presented above [35].
In conclusion, simple, Vicsek-style, models of active

matter where self-propelled particles interact with
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FIG. 2 (color online). Vicsek-style model with nematic
alignment and topological neighbors, where N ¼ L2 particles
move at a speed v0 ¼ 1

2 on a L� L torus. Headings and

positions are updated at discrete time steps according to
�tþ1
j ¼ arg½Pk�jsgn½cosð�tk � �tjÞ�ei�tk þ ntj��

t
j� and rtþ1

j ¼
rtj þ v0eð�tþ1

j Þ, where eð�Þ is the unit vector along �, the sum

is over the ntj Voronoi neighbors of particle j (including j itself),

and �t
j is a random unit vector in the complex plane. Nematic

order parameter S ¼ h’ðtÞit (with ’ðtÞ ¼ j 1N
P

ke
i2�t

k j) (a) and its
Binder cumulant [36] G ¼ 1� h’ðtÞ4it=ð3h’ðtÞ2i2t Þ (b) vs � for
L ¼ 32, 64, 128 (the arrows indicate increasing sizes). The
noncrossing S curves and the absence of minima in the Binder
curves all point to a continuous transition. Accurate estimates of
its critical exponents will be provided elsewhere.

PRL 109, 098101 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

31 AUGUST 2012

098101-4



neighbors defined via nonmetric rules (e.g., Voronoi neigh-
bors) are amenable, like their ‘‘metric’’ counterparts, to the
construction of continuous hydrodynamic theories well
controlled near onset. The relatively simple framework of
Vicsek-style models offers a two-dimensional parameter
plane which can be studied entirely. More complicated
microscopic starting points, for instance where positional
diffusion would also be considered, inevitably raise the
dimensionality of parameter space. We have shown here
that nonmetric theories differ essentially from metric ones
in the independence of their linear coefficients k on the
local density, a property directly linked to the fact that
the collision rate per particle is constant in metric-free
systems. We have shown further that the homogeneous
ordered phase is linearly stable near onset for metric-free
systems, in contrast with the long-wavelength instability
present in metric cases.

We finally discuss the relevance (say in the
renormalization-group sense) of metric-free interactions
in deciding active matter universality classes. Our work
has shown that the deterministic continuous theories of
metric-free active matter systems are formally equivalent
to those of their metric counterparts, except for the density
dependence of the linear coefficients. In the polar case, our
hydrodynamic equations thus share the same structure as
the Toner and Tu equations [3]. This could be taken as an
indication that the homogeneous, ordered, fluctuating
phase observed in the Vicsek model with Voronoi neigh-
bors does not differ from the Toner-Tu phase of its metric
counterpart, in disagreement with the slight numerical
discrepancies between the two cases reported in Ref. [23]
about the scaling exponent of the anomalously strong
density fluctuations. This calls for more extensive micro-
scopic simulations assessing finite-size effects, but also
for incorporating effective noise terms, properly derived
in both cases, and for studying the resulting field theories, a
task left for future work.
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