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We demonstrate that local modulations of magnetic couplings have a profound effect on the temperature

dependence of the relaxation rate of optical magnons in a wide class of antiferromagnets in which gapped

excitations coexist with acoustic spin waves. In a two-dimensional collinear antiferromagnet with an

easy-plane anisotropy, the disorder-induced relaxation rate of the gapped mode, �imp � �0 þ AðT lnTÞ2,
greatly exceeds the magnon-magnon damping, �m-m � BT5, negligible at low temperatures. We measure

the lifetime of gapped magnons in a prototype XY antiferromagnet BaNi2ðPO4Þ2 using a high-resolution

neutron-resonance spin-echo technique and find experimental data in close accord with the theoretical

prediction. Similarly strong effects of disorder in the three-dimensional case and in noncollinear

antiferromagnets are discussed.

DOI: 10.1103/PhysRevLett.109.097201 PACS numbers: 75.10.Jm, 75.40.Gb, 75.50.Ee, 78.70.Nx

Introduction.—The recent development of the neutron-
resonance spin-echo technique has led to dramatic improve-
ment of the energy resolution in neutron-scattering
experiments [1–4]. When applied to elementary excitations
in magnetic insulators, this technique allows one to measure
magnon linewidth with the �eV accuracy compared to
the meV resolution of a typical triple-axis spectrometer.
Damping of quasiparticles depends fundamentally on the
strength of their interactions with each other and with impu-
rities, information not accessible directly by other measure-
ments. Although theoretical studies of magnon damping
in antiferromagnets (AFs) go back to the 1970s [5,6], a
comprehensive comparison between theory and experiment
is still missing, mainly due to the lack of experimental data.

Magnon-magnon scattering is traditionally viewed as the
leading source of temperature-dependent magnon relaxation
rates in AFs [5,6]. Another common relaxation mechanism
in solids is the lattice disorder, which is responsible for a
variety of the low-temperature effects, such as residual
resistivity of metals [7] and finite linewidth of antiferromag-
netic resonances [8]. However, ‘‘temperature-dependent’’
effects of disorder are usually neglected because of the higher
powers of T in impurity-induced relaxation rates compared
to leading scattering mechanisms and of the presumed dilute
concentration and weakness of disorder. The closest analogy
is the resistivity of metals, in which the T ¼ 0 term is due to
lattice imperfections and the temperature-dependent part is
due to quasiparticle scattering.

In this work, we demonstrate that scattering on the spatial
modulations of magnetic couplings should completely
dominate the low-temperature relaxation rate of gapped
excitations in a wide class of AFs. Such modulations, pro-
duced by random lattice distortions, yield scattering poten-
tial for propagating magnons and, at the same time, modify
locally their interactions. For an illustration, we consider an

example of the two-dimensional (2D) easy-plane AF with
one acoustic and one gapped excitation branch. In addition
to potential scattering, responsible for a finite damping
�0 / ni of optical magnons, see Fig. 1(a), there exists
an impurity-assisted temperature-dependent scattering of
gapped magnons on thermally excited acoustic spin waves,
see Fig. 1(c), which yields �impðTÞ / niT

2ln2T. Despite the

presumed smallness of impurity concentration ni, at low
temperatures this mechanism dominates over the conven-
tional magnon-magnon scattering, Fig. 1(b), which carries
a much higher power of temperature: �mm / T5. We have
performed resonant neutron spin-echo measurements with
a few �eV resolution on a high-quality sample of
BaNi2ðPO4Þ2, a prototype 2D planar AF [9]. We find that
the theory describes very well the experimental data for the
linewidth of optical magnons. Similar dominance of the
impurity-assisted magnon-magnon scattering should persist
in the 3D AFs and is even more pronounced in the noncol-
linear AFs. We propose further experimental tests of this
mechanism.
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FIG. 1 (color online). (a)–(c) Diagrams representing impurity,
magnon-magnon, and impurity-assisted scattering of the optical
magnon (solid lines). Dotted lines are acoustic magnons.
(d) Schematic energy spectrum of the model (1).
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Theory.—We begin with the spin Hamiltonian of a
collinear AF with an easy-plane anisotropy induced by
the single-ion term D> 0:

H ¼ X
hiji

JijSi � Sj þD
X
i

ðSzÞ2: (1)

Two examples are the nearest-neighbor AFs on square and
honeycomb lattices. The latter model, with the nonfrustrat-
ing third-neighbor exchange, is relevant to the spin-1 AF
BaNi2ðPO4Þ2 [9] discussed below.

As a consequence of broken XY symmetry, excitation
spectrum in the ordered antiferromagnetic state possesses
acoustic (�) and gapped (�) magnon branches:

"�k � cjkj; "�k � �þ k2

2m
; (2)

see Fig. 1(d) for a sketch. Explicit expressions for c,�, and
m for BaNi2ðPO4Þ2 are provided in Ref. [10].

Defects are present in all crystals. While vacancies and
substitutions may be eliminated in some materials, inho-
mogeneous lattice distortions remain an intrinsic source of
disorder, inducing weak random variations �J and �D of
microscopic parameters in the spin Hamiltonian (1) [11].
Both types of randomness have qualitatively the same
effect on magnon lifetimes. For example, local modifica-
tion of the single-ion anisotropy �DðSz‘Þ2 generates scat-

tering potential for magnons

H imp
2 ¼ X

k;k0
eiðk�k0ÞR‘Ukk0cyk0ck; (3)

where ck ¼ �kð�kÞ, Ukk0 ¼ �DSðuk þ vkÞðuk0 þ vk0 Þ,
and uk, vk are the Bogolyubov transformation parameters.
For optical magnons at k, k0 ! 0, the momentum depen-
dence is not important, Ukk0 ¼ Oð�DÞ. For bond disorder,
all expressions are the same with a substitution �D ! �J
and an additional phase factor, which depends on bond
orientation and disappears after impurity averaging.

For the gapped magnons with k ! 0, scattering ampli-
tude in the second Born approximation, Fig. 1(a), averaged
over spatial distribution of impurities is [12]

�
imp
k � �0 / ni �U

2
i

m!2
max

�2
; (4)

where ni is the impurity concentration, �Ui ¼ Oð�J; �DÞ is
the averaged impurity potential, and !max is the magnon
bandwidth [10]. Thus, in 2D, conventional impurity scat-
tering results in a finite zero-temperature relaxation rate of
the gapped magnons.

At low temperatures, the principal scattering channel for
optical magnons is due to collisions with the thermally
excited acoustic spin waves with cq� T � �. All other
processes are either forbiddenkinematically or exponentially
suppressed. In this case we can consider only �� ! ��
terms in the magnon-magnon interaction:

H mm
4 ¼ X

kþq¼k0þq0
Vmm
kq;k0q0�

y
k0�

y
q0�q�k; (5)

H imp
4 ¼ X

kq;k0q0
ei�kR‘V

imp
k;q;k0;q0�

y
k0�

y
q0�q�k; (6)

where the first and the second row correspond to the
conventional and to the impurity-assisted magnon-magnon
scattering, respectively, with �k ¼ kþ q� q0 � k0. The
latter is of the same origin as the conventional impurity
scattering in (3) since �D and �J also modify locally inter-
actions amongmagnons [10]. In the one-loopapproximation,
(5) and (6) yield the self-energies of Figs. 1(b) and 1(c).
Applying standardMatsubara technique, relaxation rates can
be expressed as

�mm
k ¼ �

X
qq0

jVmm
kq;k0q0 j2Nq

k0q0�ð�"Þ; (7)

�
imp;T
k ¼ �ni

X
qq0k0

j �V imp
kq;k0q0 j2Nq

k0q0�ð�"Þ; (8)

where �"¼"kþ"q�"q0 �"k0 , Nq
k0q0 ¼nqð1þnq0 þnk0 Þ�

nq0nk0 , and nq is the Bose factor.

There are two important differences between �mm and
�imp;T in (7) and (8). First, the total momentum is not
conserved for impurity scattering. This relaxes kinematic
constraints of the 4-magnon scattering processes, but
requires instead integration over the extra independent
momentum k0. Second and most crucial, interaction

vertices Vmm
kq;k0q0 and V

imp
kq;k0q0 show very different long-

wavelength behavior as q, q0 ! 0. We calculate them
using the approach similar to Refs. [5,6], and find that in
the long-wavelength limit magnon-magnon interaction (5)

is Vmm
kq;k0q0 /

ffiffiffiffiffiffiffi
qq0

p
, in accordance with the hydrodynamic

limit [13]. However, for the impurity-assisted scattering (6),

interaction is V
imp
kq;k0q0 / 1=

ffiffiffiffiffiffiffi
qq0

p
. This can be understood as

a consequence of an effective long-range potential for
acoustic magnons produced by the gaped magnon while in
the vicinity of an impurity.

The leading T-dependence of �mm
k!0 and �

imp;T
k!0 can be

calculated now using (2) and approximating interaction
vertices with their long-wavelength expressions. The
main contribution to the integrals in (7) and (8) is deter-
mined by acoustic magnons with q, q0 � T=c. Then, a
straightforward power counting yields

�mm
k!0 � B

�
T

!max

�
5
; (9)

where B�!max [10]. Thus, the inverse lifetime of an
optical magnon is proportional to T5 in 2D. A generalization
to higher dimensions gives �mm / T2Dþ1. The T7-law for
the relaxation rate of optical magnons in 3D AFs was
previously predicted in Ref. [14]. We note that for a given
model, the effect of magnon-magnon scattering in (9) can be
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calculated using microscopic parameters, thus putting strict
bounds on its magnitude.

The same calculation for�
imp;T
k!0 proceeds via the following

integral:

�imp;T
k!0 � ni �U

2
i

8�2

Z
q

Z
q0
nqðnq0 þ 1Þ

Z 1

0
k0dk0�ð�"Þ; (10)

where
R
q ¼

R
�
0 dq with �� �=a, �" ¼ cq� cq0 �

k02=2m, and we used the relation between �Vimp
kq;k0q0 in (6)

and Ukk0 in (3). The naı̈ve power counting in (10) already
gives �imp;T / T2, while a more careful consideration shows
further enhancement of the scattering as the integrals for-
mally diverge [logarithmically] in the q ! 0 region, demon-
strating an important role of the long-wavelengthmagnons in
2D. This divergence is similar to the one in the problem of
finite TN ordering temperature in 2D and is regularized
similarly by introducing low-energy cutoff. The cutoff is
either due to a 3D-crossover as in the case of some cuprates
[15], or a weak in-plane anisotropy that induces small gap
!0 in the acoustic branch, the case directly relevant to the
current work [9,16].

Combining (4) and (10) we obtain impurity-induced
relaxation rate of gapped magnons

�imp � �0 þ A

�
T

!max

�
2
��

ln
T

!0

�
2 þ �2

3

�
; (11)

where both �0 and A are proportional to ni and to the
average strength of disorder �U2

i . As a result, the impurity
scattering leads to a relaxation rate that carries a signifi-
cantly lower power of temperature than the magnon-
magnon scattering mechanism. Therefore, despite possible
smallness of the combined impurity concentration and
strength, it should dominate not only the T ¼ 0 lifetime
of the gapped magnon, but also its temperature dependence
in the entire low-temperature regime. A qualitative predic-
tion of our consideration is that �0 and A in (10) should be
of the same order since both terms are related to disorder.
In addition, for samples of the same material of different
quality, they must scale with the amount of structural
disorder in a correlated way.

In the 3D case, impurity-assisted mechanism (10) gives

�imp;T
3D / T9=2, still dominating the 3D magnon-magnon

relaxation rate �mm
3D / T7 discussed above.

Experiment.—The experimental part of our work is
devoted to the neutron spin-echo measurements of the
magnon lifetime in BaNi2ðPO4Þ2. This material is a layered
quasi-2D AF with a honeycomb lattice of spin-1 Ni2þ ions
and Néel temperature TN � 25 K. A comprehensive re-
view of the physical properties of BaNi2ðPO4Þ2 is pre-
sented in Ref. [9]. Its excitation spectrum has an optical
branch with the gap � � 32 K and an acoustic mode, as is
sketched in Fig. 1(d). The fit of the magnon dispersion
yields the following microscopic parameters: J1 ¼
0:38 meV and J3 ¼ 1:52 meV are exchanges between

first- and third-neighbor spins, and D ¼ 0:32 meV is the
single-ion anisotropy. The thermodynamic properties of
BaNi2ðPO4Þ2 follow the 2D behavior down to T & 1 K
and a small gap in the acoustic branch, !0 � 2 K, due to
weak in-plane anisotropy is consistent with the value of the
ordering temperature [9].
The spin-echo experiments were performed on the

triple-axis spectrometer IN22 (ILL, Grenoble) by using
ZETA neutron-resonance spin-echo option [17]. The inci-
dent neutron beam was polarized and the scattered beam
analyzed from (111) reflection of Cu2MnAl Heusler alloy
focusing devices. We used a fixed-kf configuration, with

kf ¼ 2:662 �A�1 or kf ¼ 1:97 �A�1. Different rf-flipper

configurations were used in order to adapt the spin-echo
time (energy) tNSE ("NSE ¼ h=tNSE) to the magnetic
excitation lifetimes, typically in the range of 5–50 ps
(130–13 �eV). As for any spin-echo experiment [18,19],
the measurement of the neutron polarization (spin-echo
amplitude) after the scattering, PðtNSEÞ, provides us with
a direct access to the correlation function Sðq; tNSEÞ. For a
spin-wave excitation described by a Lorentzian function
in energy of half width �, one can show that Pð"NSEÞ ¼
P0ð"NSEÞ expð��="NSEÞ, in which the prefactor P0 de-
pends on the spin-echo resolution.
For our measurements, we have used a 2 cm3 single

crystal ofBaNi2ðPO4Þ2 orientedwith thea� andc� reciprocal
axes in the scattering plane. The spin-echo datawere taken at
the antiferromagnetic scattering vector QAF ¼ ð1; 0; 0Þ and
the energy transfer �E ¼ 3 meV corresponding to the
bottom of the dispersion curve of the gapped mode [9]. In
determining the spin-echo amplitudes, neutron intensities
were corrected for the inelastic background, measured
at the scattering vector QAF and the energy transfer
�E ¼ 5 meV. Results of the temperature dependence of
spin-echo amplitudes for several representative "NSE’s are
shown in Fig. 2. Solid lines are the fits of the spin-echo
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FIG. 2 (color online). Temperature dependence of the polar-
ization (spin-echo amplitude) of the neutron beam PðTÞ for
several representative spin-echo energies.
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amplitudes with P ¼ P0e
��="NSE using relaxation rate in the

functional form given by (9) and (11), � ¼ �mm þ �imp,
which we discuss next. Using the full set of PðT; "NSEÞ
data, experimental results for �ðTÞ are extracted from the
fits of lnðPÞ vs "NSE at fixed temperatures. These results are
presented in our Fig. 3 together with the theoretical fits.

Comparison.—The relaxation rate approaches the con-
stant value of �0 � 25 �eV at T ! 0, in agreement with
the expectation (4) for the gapped mode in 2D. The low-T
dependence of the relaxation rate is following the power
lawmuch slower than T5. The quality of the free-parameter
fit of �� ¼ �ðTÞ � �0 with just the T5 law is not satisfac-
tory for either �ðTÞ or PðTÞ’s in Figs. 2 and 3, and the
magnitude of�� also requires an unphysically large values
of the magnon-magnon scattering parameter B in (9),
exceeding theoretical estimates roughly tenfold. On the
other hand, T2ln2T law gives much more satisfactory fits
in the low- and intermediate-T regime up to 12 K in both
�ðTÞ and PðTÞ, shown as a separate fit by the dotted line in
Fig. 3. The best fit of �ðTÞ, given by solid line, is the sum of
the magnon-magnon and impurity-scattering effects from
(9) and (11), with the magnon-magnon and impurity-
assisted parameters B ¼ 15 meV and A ¼ 90 �eV,
respectively. The same �ðTÞ is used in all three curves of
PðTÞ in Fig. 2, the original data from which experimental
�ðTÞ is extracted. Magnon bandwidth !max ¼ 64 K and
the low-energy cutoff !0 ¼ 2 K, equal to the gap in the
acoustic branch, were used.

Two remarks are in order concerning the role of the
magnon-magnon relaxation rate used in Fig. 3. First, fits
of �ðTÞ in Fig. 3 also include a contribution from scattering
off the thermally excited optical magnons, which is given

by �rr ¼ CðT�Þe��=T [10]. Its contribution is roughly equal

to that of the T5-term (9) at T ¼ 16 K ( ¼ �=2), but
diminishes faster at lower T. In the fit of �ðTÞ we use the
value of C ¼ 260 �eV, about three times the theory esti-
mate: Cth � 70 �eV. Second, the theoretical estimate of
the magnon-magnon interaction parameter in T5 law (9) is
Bth � 6 meV, again factor 2.5 smaller than the one used in
the fit (B ¼ 15 meV). Altogether, the magnon-magnon
contribution to �ðTÞ, shown by the dashed line and the
corresponding color shading in Fig. 3, is likely a generous
overestimate of its actual role in the relaxation.
Still, the contribution of the impurity-assisted mecha-

nism in �ðTÞ is very strongly pronounced and is not
explicable by the conventional scattering mechanisms.
For example, at 12 K the impurity scattering accounts for
at least 2=3 of the temperature-dependent part of �ðTÞ.
The parameter of the impurity-assisted term in (11) used in
the fit is A ¼ 90 �eV, which is of the same order with the
constant impurity term �0, meeting our expectations out-
lined above. This is, again, the strong argument that both
the constant and the T-dependent terms in the relaxation
rate must have the same origin, giving further support to
the consistency of our explanation of the data.
The values ofA and�0 cannot be determined theoretically

as the impurity concentration and strength are, generally,
unknown. However, another consistency check is possible:
the ratio of�0 to a characteristic energy scale of the problem,
!max, should give, according to (4), an estimate of the
cumulative measure of disorder concentration and its

strength: nimpð�D=DÞ2��0=!max�5�10�3. This trans-

lates into a reasonable estimate of the disorder and its
strength in BaNi2ðPO4Þ2: modulation of magnetic couplings
is equivalent to half of a percent of sites having �D (�J) of
order D (J). The amount of structural distortion in
BaNi2ðPO4Þ2 [20] is consistent with the magnitude of such
variations of magnetic couplings, given the strong spin-
lattice coupling in this material.
Other systems.—We propose that similar, and even

stronger, effects of disorder in the relaxation rate must be
present in the 2D noncollinear AFs, in which magnon-
magnon interactions acquire the so-called cubic interaction
terms [21], absent in the collinear AFs considered above.
The self-energies associated with such interaction are the
same as in Figs. 1(b) and 1(c), but with two intermediate
lines instead of three. With the long-wavelength behavior
of the impurity interaction to follow �V3ðk;qÞ / 1=

ffiffiffi
q

p
, as

in the considered case, a qualitative consideration similar
to (10) leads to:

�imp;T
k!0 � A3

�
T

!max

�
ln

T

!0

; (12)

where A3 / nimpð�D=DÞ2, an even lower power of T. Since
the canting of spins can be induced by the external field, we
propose an experimental investigation of the effect of such
a field on the relaxation rate. For the 3D noncollinear AFs,

we predict �imp;T / T5=2.
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FIG. 3 (color online). Temperature dependence of the relaxa-
tion rate � of the optical magnon with k � 0 in BaNi2ðPO4Þ2.
Full line is the best theoretical fit including all contributions
with parameters described in the text. Dashed and dotted
lines indicate separate contributions of magnon-magnon and
impurity-assisted magnon-magnon scattering.
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Recent neutron spin-echo experiment in a Heisenberg-
like AF MnF2 [1] have reported significant discrepancies
between measured relaxation rates and predictions of
the magnon-magnon scattering theory [5,6], precisely in
the regime of low-T and small-k where the theory is
assumed to be most reliable. Although the current work
concerns the dynamics of strongly gapped excitations and
our results are not directly transferable to the case of
MnF2, we have, nevertheless, presented a general case in
which the magnon-magnon scattering mechanism is com-
pletely overshadowed by impurity scattering, thus suggest-
ing a similar consideration in other systems.

Conclusions.—To conclude, we have presented strong
evidence of the general situation in which temperature-
dependence of the relaxation rate of a magnetic excitation
is completely dominated by the effects induced by simple
structural disorder. Our results are strongly supported by
the available experimental data. Further theoretical and
experimental studies are suggested.
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