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In a semiconductor heterostructure, the Coulomb interaction is responsible for the electric current drag

between two 2D electron gases across an electron impenetrable insulator. For two metallic layers

separated by a ferromagnetic insulator (FI) layer, the electric current drag can be mediated by a

nonequilibrium magnon current of the FI. We determine the drag current by using the semiclassical

Boltzmann approach with proper boundary conditions of electrons and magnons at the metal–FI interface.
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The conventional Coulomb drag effect [1–3] occurs in
two-dimensional electron gases separated by an insulator
barrier. When one of the electron gas carries a current, the
momentum transfer due to Coulomb interaction leads to a
small current in the other electron gas. Recently, this
current drag phenomenon has been discovered in a differ-
ent system with entirely different physical mechanisms [4]:
When an electric current is injected into a Pt bar deposited
on a magnetic insulator Yttrium–Iron–Garnet (YIG) film, it
is found that a small electric voltage is induced in the other
Pt bar, which is also deposited on the same YIG film but is
located several millimeters away from the current carrying
Pt bar. The authors [4] attributed their finding to the
combined effects of spin transfer torque (STT) [5,6] and
spin pumping [7,8]: The spin Hall [9] current generated by
the electric current in one Pt layer (Pt is a known material
with a large spin Hall angle) is absorbed by the ferromag-
netic insulator (FI) and for a sufficiently large STT, the
magnetic moment of the FI begins precessing. The pre-
cessing FI pumps out a spin current to the other Pt layer,
resulting in an electron current due to the inverse spin Hall
effect [10–15].

In this Letter, we propose a different geometry in which
the magnon current flows normal to the plane of the layers
throughout the structure. We show that the electron spin
current in the metallic layers induces a nonequilibrium
magnon current in the FI layer. By using semiclassical
Boltzmann approach for electrons and magnons, we are
able to self-consistently determine these currents and
thereby obtain the drag current for given geometrical and
material parameters. The resulting drag current is several
orders of magnitude larger than that in the nonlocal
geometry in Ref. [4]

To be more specific, we consider a simple trilayer struc-
ture, shown in Fig. 1 schematically, where a FI layer is
sandwiched by two heavy metal films (NM1 and NM2)
such as Pt and Ta. A charge current parallel to the plane of
the layers is injected in the layer NM1. To determine the
drag current in the layer NM2, we first establish transport
equations for each layers and then find proper boundary
conditions to solve the transport coefficients.

Electron current and spin accumulation in metallic
layers.—For the NM layers, a spin dependent Ohm’s law
has been well established and may be written in the
following form [16],

ĵ ¼ c

2
Êþ ch

4
ðÊ� � � � � ÊÞ; (1)

where the spinor current density ĵ and the electric field Ê
are 2� 2 vector matrices in spin space, � is a Paul vector
matrix, and c and ch are the electric conductivity and spin
Hall conductivity, respectively. The second term is the spin

Hall current whose antisymmetric form is essential for ĵ to

be an Hermitian in spin space (also note that Ê� � �

�� � Ê due to noncommunitivity of the Pauli matrices).
The electrical field is related to the spinor chemical poten-

tial �̂ via Ê ¼ �ð1=eÞr�̂, where eð<0Þ denotes the elec-
tron charge. While it is possible to work with an arbitrary
choice of the spin quantization, we proceed below to a
special case where the magnetic moment of the FI is
oriented in the z direction and the electric current flows
in the y direction. If we choose the spin quantization axis
parallel to the z axis, one can simply work on the two-
component (spin up and spin down) form of the Ohm’s
law; that is,

FIG. 1 (color online). Schematics of the NM/FI/NM trilayer
structure.
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j�y ðxÞ ¼ c

2
E�
y ðxÞ � �

ch
2
E�
x ðxÞ (2)

and

j�x ðxÞ ¼ c

2
E�
x ðxÞ þ �

ch
2
E�
y ðxÞ; (3)

where � ¼ �1 represent spin up and spin down. To de-
termine the spin dependent electric field, we recall the spin
diffusion equation [17]

d2

dx2
½�"ðxÞ ��#ðxÞ� ¼ �"ðxÞ ��#ðxÞ

�2
sf

(4)

and its solution

�"ðxÞ ��#ðxÞ ¼ Aie
�x=�sf þ Bie

x=�sf ; (5)

where �sf is the electron spin diffusion length, and the
constants Ai and Bi (i ¼ 1 for the NM1 layer and i ¼ 2 for
NM2) are determined by the boundary conditions.
Although these equations apply to both NM1 and NM2
layers, they have different constraints set by experimental
measurement. For the NM1 layer, we take E�

y ðxÞ ¼ Eext

where Eext is the applied electric field in the NM1 layer,
while

R
NM2 dxjyðxÞ ¼ 0 in the open circuit of the NM2

layer.
Magnon current and magnon accumulation in the FI

layer.—For the FI layer, we start with a general magnon
Boltzmann equation in the presence of spatially dependent
temperature TðxÞ and magnetic field HðxÞ,

vx

@Nm

@x
þ vx

@Nm

@T

dT

dx
þ vx

@Nm

@H
� dH
dx

þ _q � @Nm

@q

¼ �
�
@Nm

@t

�

scatt:
; (6)

where Nmðx;q; TðxÞ;HðxÞÞ is the magnon distribution. The
first term describes magnon diffusion. The second and third
terms are responsible for the magnon transport in the
presence of temperature and magnetic field gradients,
which have been recently studied in the content of spin
caloritronics [18–21]. The last term on the left side of
Eq. (6) is associated with acceleration of magnons by
external forces such as a confining potential at boundary
[22]. The scattering term on the right side of the Eq. (6)
may be modeled by the relaxation time approximation

�
@Nm

@t

�

scatt:
¼ Nm � �Nm

�m
þ Nm � N0

m

�th
; (7)

where �NmðxÞ ¼
R
dqNmðx;qÞ=

R
dq is the momentum

averaged magnon distribution while N0
mðx;qÞ ¼

½e�q=kBTðxÞ � 1��1 is the local equilibrium magnon distri-
bution, where �q ¼ Dq2 þ4g is the magnon dispersion,

D is the spin wave stiffness, 4g is the spin wave gap, and

vx ¼ 1
@

@�q
@qx

is the x component of the magnon velocity. The

first relaxation term describes those processes which
conserve the number of magnons. For example, magnon
scattering by a paramagnetic impurity has the form of
Vqq0aþq aq0 ; that is, the impurity or surface roughness

[23,24] scatters the magnon q0 to the magnon q. As long
as we neglect the wave number dependence of the scatter-
ing matrix Vqq0 , this process can be modeled by the first

term of Eq. (7). The second term of Eq. (7) does not
conserve the number of magnons. The magnon absorption
and emission relax the nonequilibrium magnons to equi-
librium ones, e.g., magnon–phonon interaction [25].
For the present system, we consider uniform tempera-

ture and magnetic field, and there is no external force on
magnons. Then, Eqs. (6) and (7) reduce to

vx

@Nmðx;qÞ
@x

¼ �Nmðx;qÞ � �NmðxÞ
�m

� Nmðx;qÞ � N0
mðqÞ

�th
: (8)

We may proceed to solve Nm by the same way as for
the electron distribution in magnetic multilayers [17].
Particularly, one may expand the nonequilibrium distribu-
tion by the Legendre polynomials,

Nmðx;qÞ ¼N0
mðqÞ

þ@N0
mðqÞ
@�q

�
�mðxÞþ

X1

n¼1

gðnÞðxÞPnðcos�Þ
�
; (9)

where �mðxÞ is the n ¼ 0 component of the nonequilib-
rium distribution and � is the angle between q and x axis.
By placing the above equation into Eq. (8) and by utilizing
the orthogonality property of the Legendre polynomials,
one can arrive at a series of algebraic equations for the

coefficients gðnÞðxÞ. In the Supplemental Material [26], we
show the solutions in some limiting cases. Once the distri-
bution functions Nmðx;qÞ are determined, we can find the
magnon accumulation and magnon current via

jmðxÞ ¼ �2�B

ð2�Þ3
Z

dqvxNmðq; xÞ;

�nmðxÞ ¼ 1

ð2�Þ3
Z

dq½Nmðq; xÞ � N0
mðqÞ�;

(10)

where �B is the Bohr magneton. Note that a magnon
carries spin moment �	@ð¼ �2�BÞ where 	 is the gyro-
magnetic ratio.
We may further simplify the solution of the nonequilib-

rium magnon distribution by discarding high orders
(n � 2) of the polynomials. Consequently, we find a
local relation between magnon accumulation and magnon
current,
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d

dx
jmðxÞ ¼ 2�B

�nmðxÞ
�th

(11)

and

jmðxÞ ¼ 2�B�m
3

I2
I0

d

dx
�nmðxÞ; (12)

where In are integration constants In �
1

ð2�Þ3
R
d3qvn @N0

mðqÞ
@�q

. We point out that this local current

expression is valid in the limit �th � �m which is a good
approximation for ferromagnets [25] (see Supplemental
Material [26]). By combining Eqs. (11) and (12), we obtain
the diffusion equation for nonequilibrium magnons,

d2

dx2
�nmðxÞ � �nmðxÞ

l2m
¼ 0; (13)

where the magnon diffusion length is defined as lm ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2
3I0

�th�m
q

. At room temperature (T ¼ 300 K), for YIG

with 4g 	 10�5 eV, �m 	 10�7 s, and �th 	 10�6 s, lm is

estimated at 0.05 cm, consistent with the measurement
[27]. Equation (13) has the general solution,

�nmðxÞ ¼ AFe
�x=lm þ BFe

x=lm (14)

and thus the magnon current density reads

jmðxÞ ¼ 2�Blm
�th

ð�AFe
�x=lm þ BFe

x=lmÞ: (15)

Boundary conditions.—The outer-boundary conditions
at x ¼ �L1 and x ¼ dþ L2, where L1, d, and L2 represent
the thicknesses of the layers of NM1, FI, and NM2, are

j";#x ð�L1Þ ¼ j";#x ðdþ L2Þ ¼ 0. The boundary conditions at
the metal–FI interfaces depend on the interaction between
electrons and magnons. Here we assume an s-d type inter-
action�Jsd� � Si, where � is the itinerant electron spin of
the metal layer and Si is the local spin of the FI layer at the
interfaces. The interaction conserves total angular momen-
tum and thus the first boundary condition is the continuity
of total spin current at the interfaces; that is,

ð��B=eÞ½j"xð0�Þ � j#xð0�Þ� ¼ jmð0þÞ
and

jmðd�Þ ¼ ð��B=eÞ½j"xðdþÞ � j#xðdþÞ�: (16)

The total angular momentum current conservation simply
states that electron spin current in the metals must be
converted into magnon current in the FI layer at the inter-
faces. If the interfaces have magnetic roughness, the spin-
flip scattering by magnetic impurities can transfer spin
angular momentum to lattice via spin–orbit coupling. In
this case, the outgoing spin current would be reduced [28].

The other boundary conditions at the interfaces should
relate the electron spin accumulation to the nonequilibrium
magnon density. Within the s-d model, one can treat the

electron spin density as an effective magnetic field on the
interface spin of the FI layer; that is, Heff ¼ Jsd�mz and
we find,

�"ð0�Þ ��#ð0�Þ ¼ "�nmð0þÞ
and

�"ðdþÞ ��#ðdþÞ ¼ "�nmðd�Þ; (17)

where

" ¼ 4ð�DÞ3=2
JsdDð"FÞa30 �

ffiffiffiffiffiffiffiffiffi
kBT

p
Li1=2ðe��g=kBTÞ ; (18)

Dð"FÞ is the electron density of state at Fermi level, a0 is

the lattice constant of the NM layer, and LisðzÞ �
P1

k¼1
zk

ks

is the polylogarithm. The detailed derivation of " is ar-
ranged in the Supplemental Material [26]. We note that
Takahashi et al.[29] have proposed a boundary condition at
the interface which relates magnon spin current to spin
accumulation, that is, jm / �" ��#; such boundary con-
dition is unable to self-consistently determine the magnon
current. A rough order of magnitude estimation of " can be
readily obtained by using the following plausible parame-
ters appropriate for Pt/YIG/Pt structure:Dð"FÞ 	 3ne=2�F,

ne ¼ 5� 1022 cm�3, Jsd ¼ 1 eV, �F ¼ 5 eV, a0 ¼ 4 �A,
and D ¼ 6 meV � nm2, and thus "	 0:2 meV � nm3.
With the above boundary conditions, the constants in

Eqs. (5) and (14) can be readily determined. If one uses
an Ampere meter [30] to measure the average (measured)

induced electric current density jð2Þy ¼ ð1=L2Þ
R
dxjð2Þy ðxÞ in

NM2 layer, we find that the ratio between the induced

current and the injected current magnitude
ð� jð2Þy =jð1Þy Þ is,


¼
�
ch
c

�
2
�
�sf

L2

�

�
sech

�
L2

�sf

�
½cosh

�
L2

�sf

�
�1�

h
b�1þbtanh

�
L2

�sf

�i
sinh

�
d
lm

�
þ
h
1þtanh

�
L2

�sf

�i
cosh

�
d
lm

�;

(19)

where b ¼ c"�th=ð4e2lm�sfÞ, and L1 � �sf is assumed for
simplicity. The first prefactor ðch=cÞ2 originates from the
two successive conversions between electric current and
spin Hall current in NM1 and NM2 due to the spin Hall and
inverse spin Hall effect, respectively. The second prefactor
�sf=L2 indicates that the range of the current density in
NM2 is �sf; that is, if the thickness of NM2 exceeds �sf , the

average current density jð2Þy would be inversely proportional
to L2. Interestingly, when L2 is much smaller than �sf , the
induced electric current is also small; this is because t
he spin current at the surface x ¼ dþ L2 is zero and thus
the self-consistent calculation demands a small current
throughout the NM2 layer. In Fig. 2, we show 
 as a
function of the thickness of the metal layer (NM2) for
Pt/YIG/Pt trilayers with several different YIG layer
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thicknesses. We choose the material parameters as follows:
Pt layer conductivity cPt 	 0:1ð�� � cmÞ�1, spin diffusion
length �sf ¼ 7 nm, and the spin Hall angle ch=c ¼ 0:05
[31]; magnon diffusion length lm ¼ 0:05 cm and magnon
relaxation time �th ¼ 10�6 s. We see that
 decreases as the
thickness of the YIG layer increases due to the decay
of magnon diffusion current. Also for fixed YIG layer thick-
ness, 
 reaches its maximum around L2 ¼ �sf . The peak
value of 
 is of the order of 10�4. If the injected current
density is 106 A=cm2, the induced voltage of a Pt barwith its

length w ¼ 1 cm would be Vð2Þ ¼ wjð2Þy =c	 1 mV. If one
replaces Pt with Ta which has larger spin Hall angle of 0.1

[32], Vð2Þ can be further increased by a factor of 4.
Finally we comment on the relation of our calculation

with the experimental measurement [4]. In their experi-
ments, when the first Pt layer injects a spin current to the FI
layer, the magnons propagate in the plane of the FI layer in
order to reach the second Pt. While there is a similar
nonequilibrium magnon density buildup near the second
Pt layer, the direction of the magnon current and the
gradient of the magnon density are in the plane of the
layer. In another word, there is neither magnon current nor
magnon density gradient in the direction perpendicular to
the layer such that the second Pt layer is unable to receive
any spin angular momentum from the FI layer. Thus, we
conclude that the nonlocal setup in the experiment [4] is
not relevant to our theory. In the conventional nonlocal
metallic spin valve, however, one does observe a voltage
change of the entire detection bar due to the spin accumu-
lation (not the spin current or gradient of the spin accumu-
lation) in the channel. In the present case, we derive the
induced current in the second Pt bar which is related to the
spin current (or magnon density gradient) in the direction
perpendicular to the layer. Furthermore, the observed cur-
rent in the experiment [4] has been attributed to the STT
and spin pumping, which is several orders of magnitude
smaller than what we predict in our geometry.
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