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We investigate the location and nature of the para-ferro transition of interacting electrons in dis-

persionless bands using the example of the Hubbard model on the Tasaki lattice. This case can be analyzed

as a geometric site-percolation problem where different configurations appear with nontrivial weights. We

provide a complete exact solution for the one-dimensional case and develop a numerical algorithm for the

two-dimensional case. In two dimensions the paramagnetic phase persists beyond the uncorrelated

percolation point, and the grand-canonical transition is via a first-order jump to an unsaturated

ferromagnetic phase.

DOI: 10.1103/PhysRevLett.109.096404 PACS numbers: 71.10.Fd, 64.60.De

Introduction.—The interplay of the Coulomb interaction
with the Pauli principle was already recognized by
Heisenberg [1] to give rise to a ferromagnetic exchange
interaction, also encoded in Hund’s rule about aligned
spins in a partially filled shell. For a many-body system
of correlated electrons with a flat band, when the interac-
tion energy completely dominates over the kinetic energy,
the ferromagnetic instability is one of the few problems for
which exact results are available, albeit for a restricted
range of fillings [2–7].

Flat band systems are receiving a great deal of attention
right now, in particular with the view of realizing new
many-body phases there (see Refs. [8–12] and references
therein); in this context, the possibility of ferromagnetism
as a many-body instability is also being considered [13]. It
is therefore timely to provide a detailed study of the phase
diagram and the critical properties of this form of magne-
tism: we analyze a flat-band ferromagnet with an on-site
Hubbard interaction of strength U � 0. For U ¼ 0, any
state involving electrons occupying the flat band only is
trivially a ground state.

Crucially, this degeneracy is only partially lifted when a
repulsive U > 0 is switched on. First, since the flat band
permits well-localized real-space electronic wave func-
tions, at low density electrons can be placed on the lattice
so that they do not overlap. Second, even if they do overlap,
they can still avoid paying an energy penalty U: the basic
reason is that the Pauli principle, by demanding an anti-
symmetric pair wave function, makes the overlap between
two electrons on the same site vanish provided they are
in a symmetric spin state. This is the origin of flat-band
ferromagnetism.

As the density of electrons increases, ferromagnetic
clusters of increasing size appear. The degeneracy,

mþ 1, of a ferromagnetic cluster containing m electrons,
gives differing weights to different clustering of electrons.
The ferromagnetic transition corresponds to the emergence
of a cluster containing a nonzero fraction of the electrons.
An early remark by Mielke [2] likened this problem to

one of percolation. Mielke and Tasaki [3,4] noted that, for a
class of flat-band ferromagnets on particular decorated
lattices, the percolation problem in question is not a
standard one [14,15] but rather one including nontrivial
weights.
Here, we develop this analogy in detail. First of all, we

point out that the interaction between the clusters, on
account of its ‘‘statistical origin’’ in the Pauli principle, is
unusual in that it is range-free and purely geometric—two
particles interact only if they form part of the same cluster.
The interaction is genuinely many-body in that it cannot be
decomposed into a sum of pairwise terms. It is effectively
repulsive and only depends on the size of the cluster,
irrespective of its shape. Despite its long range, the statis-
tical interaction does saturate.
This motivates the study of the resulting unusual perco-

lation problem, which we call Pauli-correlated percolation
(PCP). We find that it has a number of interesting features
in its own right. It provides an instance of a problem in the
quantum physics of strongly correlated electrons which
can be ‘‘reduced’’ to a highly nontrivial problem in clas-
sical statistical mechanics, on which an entirely different
set of tools can be brought to bear. We first demonstrate
some special features of this problem by providing a
complete exact solution of the one-dimensional (1D) ver-
sion of this model, which corresponds to a sawtooth lattice
potentially realized in strongly correlated sawtoothlike
compounds such as CeRh3B2 [5]. Unlike standard perco-
lation, this exhibits a tendency to break up large clusters as
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well as a development of spatial (anti)correlations. Its
percolation transition at full filling is continuous.

Next, we carry out an analysis of the phase diagram for
the two-dimensional (2D) Tasaki lattice, a decorated
square lattice (see left panel of Fig. 1). Using a numerical
algorithm custom-tailored to the problem at hand by
extending the Hoshen-Kopelman and Newman-Ziff algo-
rithms [16,17] for standard percolation, we establish that
the ferromagnetic transition does indeed take place at a
filling comfortably in excess of the corresponding
well-known percolation transition on the square lattice at
pc ¼ 0:592746 . . . [15,17]. In the grand-canonical en-
semble, this transition is of first order; in the canonical
ensemble we find concomitant phase-separated states (see
Fig. 1 for some examples).

Pauli-correlated percolation and flat-band ferromagne-
tism.—As a representative system with a dispersionless
(flat) band, let us consider the Tasaki model [3,4], although
our approach in principle can be adapted to other flat-band
lattices. The enumeration of all ground states of the repul-
sive Hubbard model on the Tasaki lattice maps to a perco-
lation problem where each occupied site on a hypercubic
lattice corresponds to an electron localized in a trapping
cell (whose wave function only overlaps with that of
electrons in adjacent cells). (The details of this mapping,
which are unimportant for the following, are relegated to
the Supplemental Material [18]). All ground states can be
labeled by the possible geometric configurations of n
electrons distributed over N traps, labeled by q, and a
nontrivial weight of each state [4]

WðqÞ ¼ YMq

i¼1

e�jCijðjCij þ 1Þ; (1)

which arises because of the spin degeneracy of the ferro-
magnetic cluster of size jCij in configuration q (Mq de-

notes the number of clusters in the system). Here e� is a
fugacity which can be used to tune the number of electrons
in a grand-canonical ensemble.

The expectation value of an operator A is given by the
usual expression

hAi ¼
P
q
AðqÞWðqÞ
P
q
WðqÞ : (2)

For the grand-canonical ensemble, the sum over q runs
over all configurations of n ¼ 0; . . . ;N electrons while
for the canonical ensemble, it is restricted to configurations
with a given number of electrons n.
From the point of view of magnetism, a particularly

important observable is the square of the total spin S2

which can be written for a particular geometric configura-
tion q in two equivalent ways

S 2
q ¼

XMq

i¼1

jCij
2

�jCij
2

þ 1

�
¼ Xn

l¼1

N nqðlÞ l2
�
l

2
þ 1

�
: (3)

In the first form, the contribution from each cluster is
manifest while the second form relates it to nqðlÞ, the
normalized number of clusters of size l, i.e., a quantity
which plays a central role in percolation theory [14,15].
Quantum-statistical interaction.—Important differences

arise between our Pauli-correlated percolation and the
standard one [with trivial weight factor WðqÞ � 1]. The
weight factor can be cast as a pseudo-Boltzmann weight
of statistical origin, WðqÞ � exp½lnWðqÞ�. The resulting
effective entropic interaction, lnWðqÞ, has the following
properties. First, it is repulsive—a group ofm electrons has
maximal weight 2m if they form isolated one-electron
‘‘clusters,’’ and minimal weightmþ 1 if they form a single
cluster. These extreme cases show that lnðmþ 1Þ �
lnWðqÞ � m ln2 saturates, i.e., is never superextensive un-
like other long-range interactions. Befitting its quantum
statistical origin, the interaction is range-free—the shape
of the cluster is unimportant, only its number of electrons
matters. Note also that the interaction is a genuinely many-
body one: due to the form lnWðqÞ ¼ lnðmþ 1Þ it cannot be
written as a sum of two-particle terms.
Taking all of this together demonstrates that this inter-

action gives rise to an entirely novel ‘‘Pauli-correlated’’
percolation problem, of interest in its relevance to flat-band

FIG. 1 (color). Left: Two-dimensional Tasaki lattice. A trapping cell contains five sites (dashed red lines). The green circles and lines
show the 1D variant of the lattice (sawtooth chain). Right: Snapshots of configurations for standard and Pauli-correlated percolation for
small deviations from critical concentration. Panels (a) and (b) show snapshots (lattice extension L ¼ 200) of configurations for
standard percolation for concentrations p1 ¼ 0:574 and p2 ¼ 0:6 (pc ¼ 0:592746 . . . ), while panels (c), (d), (e), and (f) show
snapshots for Pauli-correlated percolation for p3 ¼ 0:62 (paramagnetic), p4 ¼ 0:65, p5 ¼ 0:7 (phase-separated), and p6 ¼ 0:78
(ferromagnetic). Pink color denotes the largest cluster.
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ferromagnetism and as a physically motivated example of a
nonstandard percolation problem with an unusual weight.

Exact solution in one dimension.—We first provide a
complete solution of the 1D Tasaki model (sawtooth chain)
[3–7]. A solution of the problem can be obtained with the
help of a transfer matrix [7] despite the long-range nature
of the statistical interaction (for technical details see
Ref. [18]). For a given electron density p ¼ n=N we find

nðlÞ ¼ 4ð1� pÞ3
ð2� pÞ2 ðlþ 1Þ�l; � ¼ p

2� p
: (4)

This cluster-size distribution (Fig. 2, left panel) has a
maximum at l? > 1 for p > 0:8moving along l? � �ð1þ
1= ln�Þ for p ! 1. This is unlike the standard percolation
result ð1� pÞ2pl [14], which drops monotonically with l
and thus has a maximum at l? ¼ 1.

The macroscopic magnetic moment vanishes for p < 1,
with a continuous onset at percolation, pf ¼ 1, as

ðpf � pÞ�1:

hS2i ¼ 3pð2� pÞ
8ð1� pÞ N : (5)

The connected pair correlation function

gðji� jjÞ ¼ hninji � hniihnji ¼ �ð1� pÞ2e�ji�jj=� < 0

(6)

yields a correlation length � ¼ �1=ð2 ln�Þ that diverges as
ðpf � pÞ�1 when p ! pf ¼ 1. By contrast, for standard

percolation there are no nontrivial pair correlations:
gðji� jjÞ ¼ pð1� pÞ�i;j.

The negative sign in Eq. (6) shows that the interaction
is repulsive—electron positions anticorrelate. The long-
range and many-body nature of the interactions leads to a
nontrivial cluster size distribution favoring an approxi-
mately uniform spacing of vacant cells.

The phase diagram in 2D.—The 2D case is not amena-
ble to exact solution. Here we examine the 2D PCP
numerically. Due to the nontrivial weights (1), simple
random sampling used for the conventional percolation
is insufficient.

Going beyond standard numerical schemes [16,17]
we have implemented efficient importance sampling on
L�L square lattices with periodic boundary conditions
as follows. In the grand-canonical ensemble, we simply
choose a site and if it is empty (occupied), propose to insert
(remove) an electron. In the canonical ensemble we gen-
erate a new configuration q2 from the given one q1 by
random permutation of two sites in order to ensure a fixed
number of electrons. The new configuration is accepted
with the Metropolis probability min½1;Wðq2Þ=Wðq1Þ�. In
addition, we have employed exchange Monte Carlo steps
[19] for the grand-canonical simulations. Clusters are iden-
tified in two different ways: (1) using a modified Newman-
Ziff algorithm [17] which locally updates cluster labeling
for fixed number of occupied sites and (2) using the
Hoshen-Kopelman algorithm [16] which makes a global
update. Our central results are the following.
The percolation transition is of first order as already

suggested by visual inspection of individual configurations
(Fig. 1). Grand-canonical simulations exhibit a jump at a
chemical potential �c between densities p� and pþ, fixed
by equal-sized peaks in the histograms as shown in Fig. 3.
We estimate the jump to occur between densities
p� around 0.63(1) and pþ � 0:75ð2Þ. In between, in our
canonical simulations for finite systems, ferromagnetism
appears to set on smoothly. Figure 4 shows hS2i=S2

max

[where S2
max ¼ n

2 ðn2 þ 1Þ] for systems up to 270� 270

sites. Additionally, the cluster-size distribution nðlÞ indi-
cates the emergence of a large component without passing
through a scale-free critical distribution.
Extent of nonpercolating (paramagnetic) phase.—The

critical density for PCP exceeds that of the standard case
(pc ¼ 0:592746 . . . [15,17]), see Fig. 4, where the macro-
scopic moment at p ¼ 0:62 is seen to scale to zero with
system size. This reflects the breakup of the large clusters
due to the repulsive effective interactions.
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FIG. 2 (color online). Left: nðlÞ (top) and gðlÞ (bottom) at
p ¼ 0:99 for PCP (solid line) and standard percolation (dotted
line) in 1D. Right: Deviation of hS2i=S2

max from saturation for
large p for PCP and standard percolation in 2D.

FIG. 3 (color online). Density of electrons p vs chemical
potential �, controlling the filling of the flat band in 2D. Inset:
Histograms of density for a ‘‘finite-size’’ critical value � ¼ �c.
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Percolating phase with unsaturated ferromagnetism.—
For higher densities, there appears a regime of unsaturated
ferromagnetism, where hS2i=S2

max < 1, illustrated by
p ¼ 0:78 in Figs. 1 and 4. The existence of this regime is
transparent from the percolation viewpoint: In standard
percolation the largest cluster excludes a nonzero density,
N pð1� pÞc for p ! 1, c being the coordination number
of the lattice. For PCP, with its repulsive interactions, this
is amplified (see right panel in Fig. 2). However the power
law is identical to that of standard percolation, showing
that the repulsive interactions do not immediately lead to a
breakup of the largest cluster, presumably on account of
the high entropic cost of arranging voids into continuous
lines separating two clusters.

We note some features of the canonical ensemble arising
in the phase-coexistence regime. The high-density phase
appears to form first as a compact nonpercolating object
with a macroscopic magnetic moment [the configuration at
p ¼ 0:65 shown in Fig. 1(d) is in this region]. For higher
densities, including the case p ¼ 0:7, the ferromagnetic
phase spans across the system [compare Fig. 1(e)]. The
details of the phase-separated regime therefore contain
much which is different from standard percolation includ-
ing the bootstrap and correlated variants [20,21], in par-
ticular with regard to properties which are of interest to
flat-band ferromagnetism. These topics are the subject of
ongoing studies [22].

Conclusions and perspectives.—We have considered
Pauli-correlated percolation, an unusual percolation prob-
lem arising in a strongly correlated flat-band system, where
the weights of the geometrical configurations take non-
trivial values due to the spin degeneracy and the Pauli
principle.

The Pauli-correlated percolation problem can be exam-
ined exactly in 1D and simulated efficiently in 2D. We
found that the effectively repulsive interaction leads to a

breaking up of the clusters, and thus to a first-order grand-
canonical transition in 2D, at a density which is higher than
that of standard site percolation. For the underlying 2D
Tasaki-Hubbard model our results imply ground-state
ferromagnetism in a range of electron fillings from
0.21(1) to 1=3.
Besides the 1D realization mentioned above [5] and the

hope of discovering corresponding quasi-2D materials, in
Ref. [12] the possible realization of flat-band ferromagne-
tism in organic polymers was discussed. On the other hand
the 2D version of the Tasaki lattice is so simple that it
seems to be a reasonable candidate for realization as a
system of cold atoms in optical lattices [10,23].
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