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Crystal surfaces may undergo thermodynamical as well as kinetic, out-of-equilibrium instabilities. We

consider the case of mound and pyramid formation, a common phenomenon in crystal growth and a long-

standing problem in the field of pattern formation and coarsening dynamics. We are finally able to attack

the problem analytically and get rigorous results. Three dynamical scenarios are possible: perpetual

coarsening, interrupted coarsening, and no coarsening. In the perpetual coarsening scenario, mound size

increases in time as L� tn, where the coarsening exponent is n ¼ 1=3 when faceting occurs, otherwise

n ¼ 1=4.
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Introduction.—The still ongoing large interest in instabil-
ities in crystal growth [1] can be motivated by its lying
between the practical problem of controlling the growth
processes and the fundamental domain of out-of-equilibrium
transitions and pattern formation. Even if some phenomena
may be studied in one spatial dimension [2], the most inter-
esting physics of surface growth occurs in two spatial dimen-
sions, where rigorous approaches are rare and numerical
simulations are more problematic and much more time
consuming.

The unstable growth of a crystal surface has some
similarities with phase ordering processes, for which the
analysis of Bray [3] is the most comprehensive and
successful theory (see also Refs. [4,5] for more recent
results). However, in two dimensions growth has peculiar
features [6], because the natural order parameter, the sur-
face slope m, obeys a special constraint (r�m ¼ 0), so
that resulting domain walls must be straight, which is
not the case with other phase ordering phenomena.
As a consequence, rigorous analytical approaches to crys-
tal growth instabilities are very rare. A paper by Watson
and Norris [7], based on the principle of maximal dissipa-
tion, and a couple of papers [8,9] providing exact inequal-
ities for the coarsening exponent are some of the few
examples. Other interesting, albeit heuristic, approaches
had contributed significantly to our understanding of coars-
ening [10–12].

At the general level, we think that mound formation in
two dimensional crystal growth, in spite of being quite an
old problem [13], still lacks a systematic and rigorous
approach. In this Letter we propose to fill this gap. We
start by briefly reviewing the basic phenomenology of
unstable crystal growth which is of interest to us and
presenting a well established continuum description of
the growing surface. Then the central part of the paper
follows, i.e., the application of the phase diffusion concept
that allows us to face at once a large class of models and

symmetries. In this approach, the pattern instability is
signaled by a negative phase diffusion coefficient, which
implies coarsening, i.e., an increase of the size L of the
pattern. In the case of perpetual coarsening, the depen-
dence of the diffusion coefficient on � allows us to deter-
mine the growth law, LðtÞ. Our work gives the first
rigorous, general framework for studying unstable crystal
growth and we provide important results concerning coars-
ening scenarios and coarsening exponents.
Phenomenology and model.—Here we focus on deposi-

tion processes on a high symmetry substrate, where atoms
or molecules arrive ballistically and thermally diffuse until
they are incorporated into the crystal [1]. A key process,
which is the possible cause of the instability, is the attach-
ment to steps: if adatoms stick to ascending steps more
efficiently than to descending steps, an uphill current forms
and the growing surface destabilizes, forming a mound
structure.
Experimental results are available for many systems,

especially metals, and different dynamical scenarios have
appeared. Cu(100) [14] and Rh(111) [15] are examples of a
coarsening process which occurs during the whole experi-
mental time scale. Instead, Pt(111) [16] is a prototype for
coarsening which immediately stops or does not even start,
while the height of mounds goes on increasing. In some
cases, the slopes of the mounds tend to constant values,
corresponding to faceting. In other cases, the observed
slopes increase as well. Finally, the symmetry of the pat-
tern is related to the unstable orientation: (100) surfaces
produce a fourfold pattern, while (111) surfaces produce a
threefold pattern [17]. The quantitative determination of
the coarsening exponent, when appropriate, is made ex-
tremely difficult by the short experimental time scale over
which LðtÞ is measured and by the relatively smallness of
the coarsening exponent, n & 1

3 .

Theoretical work has accompanied experiments with
kinetic Monte Carlo simulations [18] and with continuum
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approaches [6], where the dynamics of the local height of
the surface, hðx; tÞ, is governed by a partial differential
equation. Much effort has been devoted to give robustness
to the equations, while the equations themselves have been
mainly studied numerically. Below we propose a more
systematic and rigorous approach in the continuum limit,
starting from the well established class of equations

@hðx; tÞ
@t

¼ �r � ½jðrhÞ þ rðr2hÞ� � �r � Jtot; (1)

whose conservative form signals that, at the experimental
conditions usually set for these deposition processes, over-
hangs and evaporation are negligible. The total current,
Jtot, is composed of two terms: the nonequilibrium, slope
dependent current, jðrhÞ, describes the effects of the
Ehrlich-Schwoebel barrier, which hinders adatoms from
sticking to the lower step, with j ’ rh for jrhj � 1 [13];
the second term, rðr2hÞ, is the Mullins term, describing
thermal detachment of adatoms from steps and nonequi-
librium effects [19]. In Eq. (1), the white noise due to the
flux can be omitted [3]. We would like to highlight that we
do not give explicit form to the slope dependent j: our
analytical approach embraces any current j. We can even
add that Eq. (1) is also relevant for thermodynamically
unstable surfaces [20].

The method.—Equation (1) admits the trivial solution
h � 0, corresponding to the flat profile. Setting h ¼
� expð!tþ ik � xÞ and linearizing in � yields !ðkÞ ¼
k2 � k4, where k ¼ jkj, showing linear exponential
growth, until the nonlinearity can no longer be neglected.

The amplitude growth of mounds is thus fast, while
wavelength rearrangement (if any) is slow and follows a
diffusion process, as seen below. At short time scales the
structure assumes a periodic pattern defined by two basis
wave vectors q1,q2, or, similarly, by the two phases ’i ¼
qi � x. The slow evolution of the phase makes it legitimate
to introduce, besides the fast variable x, a slow dependence
on time and space, T and X, so that the local wave vector
q ¼ qðT;XÞ. Owing to the diffusion character of the
phase, we expect T ¼ "2t and X ¼ "x, where " is a small
parameter measuring the long wavelength modulation
(small gradient) of the phase. It is convenient to introduce
slow phases, related to the fast one by c i ¼ "’i, so that
qi ¼ rx’i ¼ rXc i. In a multiscale spirit, from these
definitions together with h ¼ h0 þ "h1 þ � � � , the follow-
ing expansions for the operators hold:

@t ¼ "½ð@Tc 1Þ@’1
þ ð@Tc 2Þ@’2

�; (2)

r ¼ r0 þ "rX; (3)

with r0 ¼ q1@’1
þ q2@’2

and rX ¼ ð@X; @YÞ. Finally, the
current j reads

jðrhÞ ¼ jðr0
~h0Þ þ "J ðr0

~h1 þrX
~h0Þ; (4)

where J is the Jacobian matrix. Introducing the above
expansions into Eq. (1) we obtain successively higher order
contributions in powers of ". To order "0 we obtain

0 ¼ r0 � ½jðr0
~h0Þ þ r0ðr2

0
~h0Þ� ¼ r0 � ðJ0Þtot � N ½~h0�;

(5)

which is a nonlinear equation satisfied by the steady-state

profile ~h0. Given high symmetry substrates, the stronger
condition ðJ0Þtot ¼ 0 is fulfilled. Then, to first order we
obtain

L½~h1� ¼ gð~h0; c 1; c 2Þ; (6)

where

L½~h1� � �r0 � ½J ðr0
~h1Þ þ r0ðr2

0
~h1Þ� (7)

is the Fréchet derivative of N , and

g � ð@Tc 1Þ@’1
~h0 þ ð@Tc 2Þ@’2

~h0 þr0 � ½J ðrX
~h0Þ

þ rXðr2
0
~h0Þ þ r0ðr2

1
~h0Þ�: (8)

In order to avoid secular terms, we use the Fredholm
alternative theorem [21], according to which Eq. (6) has
solutions if and only if hv; gi ¼ 0 [22], where Ly½v� ¼ 0.
While the derivation of the phase equation can be

achieved for any nonlinear equation, we focus here on
Eq. (1) such that L is a self-adjoint operator, Ly ¼ L.
This condition is equivalent to saying that the Jacobian J
is symmetric, which, in fact, is not a restriction: all surface
currents j discussed in the literature provide a symmetric
J . Thanks to the translational invariance of N with
respect to the space variable, we easily obtain nontrivial
solutions of the form vi ¼ @’i

h0, i ¼ 1; 2 (Goldstone

mode). This leads us to two diffusion equations (i ¼ 1; 2)

@Tc i ¼ @c �

@X�@X�

~Di�
��; �; �; � ¼ 1; 2; (9)

where the diffusion coefficients have the following expres-
sions:

~D1�
�� ¼

�hh1; c���ihh2; h2i � hh2; c���ihh1; h2i
hh1; h1ihh2; h2i � hh1; h2i2

�
(10)

and ~D2�
�� ¼1$2 ~D1�

��. Here we have introduced the more com-

pact notation hj ¼ @’j
~h0 ¼ @j ~h0, and

� c��� ¼ q��@�

�
J ��

@h0
@q��

�
þ 2qj�ql�@�@l@jh0

þ 3r2
0q��@�

@h0
@q��

þ ���r2
0@�h0; (11)

where the use of the zeroth order relation jðr0
~h0Þ ¼

�r0ðr2
0
~h0Þ has allowed us to replace the current with

derivatives of the steady profile.

PRL 109, 096101 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

31 AUGUST 2012

096101-2



We conclude this part stressing that our � expansion
might continue at higher order, leading to nonlinear terms
in Eqs. (9). We refer the reader to the discussion in Ref. [2],
Sec. VIC.

Pattern symmetries and phase diffusion equations.—For
definiteness we focus in the following on square (fourfold)
and hexagonal (sixfold) patterns. In the square case, we
set q1 ¼ qð1; 0Þ and q2 ¼ qð0; 1Þ and, exploiting parity

and fourfold symmetry for ~h0, the physical properties
are equivalent upon the changes ’1 $ ’2. In the hex-

agonal case, we have q1 ¼ qð1=2; ffiffiffi
3

p
=2Þ and q2 ¼

qð1=2;� ffiffiffi
3

p
=2Þ, and parity and sixfold symmetry imply

invariance under the changes (’1 $ ’2) and (’1 ! �’2,
’2 ! ’1 þ ’2). The interesting result is that, for both
symmetries, Eqs. (9) assume a much simpler form [23]:

@Tc 1 ¼ ðc 1Þ11D11 þ ðc 1Þ22D22 þ ðc 2Þ12D12; (12a)

@Tc 2 ¼ ðc 1Þ12D12 þ ðc 2Þ11D22 þ ðc 2Þ22D11; (12b)

with only three nonvanishing diffusion coefficients. The
hexagonal pattern enjoys an additional property:

D11 �D22 �D12 ¼ 0; (13)

leaving uswith only two independent diffusion coefficients.
Phase instability means wavelength rearrangement,

leading to coarsening. To investigate the stability of the

pattern we set c 1;2ðX; TÞ ¼ c ð0Þ
1;2 expð�TÞ expðiK �XÞ,

where instability is signaled by at least one positive eigen-
value�1;2ðKÞ. In the hexagonal case we straightforwardly

find from Eqs. (12) that

�1 ¼ �D22K
2; �2 ¼ �D11K

2: (14)

Since Dij are expressed in terms of integrals involving the

steady periodic pattern h0 [see Eq. (10)], stability can be
linked to the property of steady-state solutions only. It is a
simple matter to show that D22 is positive, thus �1 < 0.
The analysis of D11 is much more involved. After several
manipulations we find

D11 ¼ 4q7=4

hh21i
@qðq5=4hh212iÞ � fðqÞA0ðqÞ: (15)

The sign ofD11 (and thus of�2) is given by the sign of the

slope of the functionA ¼ ðq5=4hh212iÞ with respect to q. In
the one-dimensional models studied in Ref. [2] this func-
tion was found to be the amplitude of the steady-state
solutions. The present study reveals a new class of dynam-
ics where the relevant quantity is AðqÞ, having a more
abstract meaning than just the amplitude itself. At present a
simple physical interpretation of this function is missing.

For square symmetry, the spectrum is anisotropic, de-
pending on the angle � between K and the X axis.
However, symmetry imposes that the growth rate may be
maximal along two directions: (i) � ¼ 0, for which
�0

1ðKÞ ¼ �D22K
2 and �0

2ðKÞ ¼ �D11K
2, and

(ii) � ¼ 	=4, for which �	=4
1 ðKÞ ¼ �ðD11 þD22 �

D12ÞK2=2 and �	=4
2 ðKÞ ¼ �ðD11 þD22 þD12ÞK2=2.

Again, the stability is dictated by the sign of diffusion

coefficients: we find that the eigenvalues �0;	=4
1 are nega-

tive, while the eigenvalues �0;	=4
2 have no fixed sign:

D11 ¼ 1

hh21i
½@qðq3hh211iÞ þ q3@qhh212i

þ q2hh212i�; (16a)

D11 þD22 þD12 ¼ 4

hh21i
�
1

2
q3@qhh211i þ q2hh211i

þ 1

2
q3@qhh212i þ 2q2hh212i

�
: (16b)

Coarsening scenarios and coarsening exponents.—Even
if an exact determination of diffusion coefficients can
only be done numerically, there are two crucial limits
allowing analytical treatment: the small amplitude limit
(k ! kMAX ¼ 1) and the large wavelength or large ampli-
tude limit. The former provides the proof of the existence
of different coarsening scenarios, the latter provides the
explicit values of coarsening exponents.
For the small amplitude limit, we have considered

an isotropic current of the form jðm; c2; c4Þ ¼
mð1þ c2m

2 þ c4m
4Þ and we have found [24] steady so-

lutions and diffusion coefficients for both square and hex-
agonal symmetries. In both cases, the phase stability is
controlled by the amplitude a1ðqÞ of the steady state: we
have instability, i.e., coarsening, if a01ðqÞ< 0 (see Fig. 1).
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FIG. 1. The amplitude of stationary solutions as a function of q
for square symmetry (2q2MAX ¼ k2MAX ¼ 1): the full line indi-

cates the branch along which the system will coarsen; along the
dashed line there is no coarsening. Branches marked by the
thinnest line correspond to a larger value of c4. Inset: The three
possible scenarios for the growth model in two dimensions found
in the limit k ! kMAX, in which the sign of the diffusion
coefficients that can give instability is linked to the behavior
of the amplitude a with respect to the wavelength �. We have
coarsening (full line), no coarsening (dashed line), and inter-
rupted coarsening (dotted line).
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The sign of this derivative is determined by the coefficients
c2 and c4: perpetual coarsening occurs if c2 < 0, c4 � 0
(or c2 > 0, c4 < 0); no coarsening if c2 > 0, c4 > 0; and
coarsening up to a critical wavelength (interrupted coars-
ening) if c2 < 0, c4 > 0. The basic three scenarios are
illustrated in the inset of Fig. 1.

Perpetual coarsening is determined by a phase instability
occurring for any q. In this case we can extract the coars-
ening exponent n, LðtÞ 	 tn, through the following dimen-
sional law:

jDðqÞj 	 L2

t
; (17)

with q ¼ 2	=L. The application of Eq. (17) has always
given values in agreement with known results, both in one
dimension [2] and in two dimensions [5].

We insist on highlighting that the form of j is arbitrary
and that here we shall only distinguish between two broad
classes of systems: those which exhibit slope selection and
those which do not. In the first case the current jðmÞ has
zeros for finite values of the slope m
 [as, for example,
with j ¼ mð1�m2Þ], so that pyramids will grow in size
but with a slope tending to the constant value m
, leading
to faceting. This implies that m
 ¼ ð@xh0; @yh0Þ is con-

stant, except along domain walls that have a finite but small
thickness. We first consider the square symmetry, so, for
example,

hh211i ¼
1

ð2	Þ2
Z �

0
dx

Z �

0
dy

1

q2

�
@2h0
@x2

�
2 ¼ c11�

3 þ oð�3Þ;

where c11 is a positive constant. With the same reasoning,
at the leading order in �we find hh212i ¼ c12�

3 and hh21;2i ¼
c’�

2. Therefore, we getD11 ¼ �2qc12=c’, which is nega-

tive, signaling instability. For the other coefficient we have
ðD11 þD22 þD12Þ ¼ 2qðc12 � c11Þ=c’, with c11 > c12
for phase instability. Plugging the results for Dij into

Eq. (17) we finally obtain

L� t1=3: (18)

A similar analysis for hexagons allows us to determine
[Eq. (16)] that they have exactly the same behavior with �
as for the square symmetry, meaning that the coarsening
exponent n ¼ 1=3 also holds for sixfold symmetry.

We have also analyzed the coarsening exponents for
models without slope selection in the steady pattern:
when L increases, the slope increases as well. Assuming
that the mound profile changes only along one direction
while it remains constant along the perpendicular one, we
can find the asymptotic profile. Thus, for a current that
behaves asymptotically (large slope) as jðmÞ ’ 1=jmj�,
�> 1, we have 1=jmj� ¼ �@2m=@x2. By using its solu-
tion, we have finally obtained the result

L� t1=4 (19)

for both symmetries and for any values of �, as in the one-
dimensional case [2].
Conclusions and discussion.—Time and length scales of

the emerging structure have been investigated within the
phase diffusion notion, which has allowed us to relate the
growth dynamics to the properties of stationary solutions.
The sign of the coefficients that dictate instability is related
to some abstract function [see Eq. (15)] that depends on
steady-state solutions. In the limit of small amplitude the
abstract function coincides with the amplitude of the pat-
tern. In this case three scenarios, namely perpetual coars-
ening, no coarsening, and interrupted coarsening, are
possible. This is the first analytical evidence of such dy-
namical scenarios in two-dimensional growth models.
As for the coarsening exponents, they deserve special

discussion. In fact, while the result [Eq. (18)] for a faceted
sixfold pattern and the result [Eq. (19)] for an unfaceted
pattern agree with numerics and scaling considerations
[11,25], the exponent n ¼ 1=3 for a faceted square pattern
seems to be in contradiction with some numerics [25,26],
where a slower coarsening n ¼ 1=4 is reported. These
authors argue that in the square case the coarsening dy-
namics may be slaved to the appearance of roof tops [26], a
type of domain wall which is not present in a regular lattice
of square pyramids, where only the so called pyramid
edges appear [27]. This type of dislocation, according to
Refs. [25,26], plays a major role in their numerical simu-
lations, leading to a slowing of coarsening: n ¼ 1=4 in-
stead of n ¼ 1=3. However, more recent results [28] show
that such topological defects may or may not appear,
depending on the explicit form of the slope dependent
current. Therefore, from the point of view of numerical
simulations, the faceted square case does not give a unique
picture. We should also add that in Refs. [25,26] the square
pattern was pointed out as metastable and therefore defect
generation was required to overcome the metastability
barrier, but we have shown exactly that the square pattern
is linearly unstable with respect to phase fluctuations.
A theory of coarsening in the presence of topological

defects is beyond the reach of the present study. However,
our results support the idea that coarsening can take place
via pyramid coalescence, without the assistance of defect
generation. Therefore, since defect occurrence was found
to slow down coarsening, our analysis might suggest that
there always exists a faster channel for dynamics, i.e.,
without the intervention of topological defects. It would
be an important future line of research to see whether or not
the presence of defects, or the lack thereof, is a fundamen-
tal ingredient for some specific equations, or rather
whether it depends on initial conditions, boundary condi-
tions, system size, etc.
All of these results have been established without evok-

ing any specific form of the slope dependent current jðmÞ,
therefore pointing to the existence of a universality class.
Furthermore, the results are independent of the considered
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symmetries: hexagons and squares. It would be an inter-
esting task for future research to see whether or not this
conclusion survives for the three other Bravais lattices
(rectangular, rectangular centered, and oblique). Finally,
we point out that unstable growth on a (111) surface
produces a threefold pattern, which does not fall within
the Bravais lattices. It is an open question to understand
how such pattern can be analyzed within our approach.

A last word on the experimental results is appropriate.
While the large variability of experimental values for n
[6,17] prevents a quantitative comparison, our different
dynamical scenarios for coarsening are well observed
[14–16].
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241402 (2004); L. Golubović, A. Levandovsky, and D.
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