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The Adam-Gibbs relation between relaxation times and the configurational entropy has been tested

extensively for glass formers using experimental data and computer simulation results. Although the form

of the relation contains no dependence on the spatial dimensionality in the original formulation,

subsequent derivations of the Adam-Gibbs relation allow for such a possibility. We test the Adam-

Gibbs relation in two, three, and four spatial dimensions using computer simulations of model glass

formers. We find that the relation is valid in three and four dimensions. But in two dimensions, the relation

does not hold, and interestingly, no single alternate relation describes the results for the different model

systems we study.

DOI: 10.1103/PhysRevLett.109.095705 PACS numbers: 64.70.Q�, 61.20.Lc, 64.70.pm

A central theme in the study of glass forming liquids is a
satisfactory understanding of the behavior of relaxation
times as the glass transition is approached, showing tem-
perature dependence typically stronger than the Arrhenius

law: �ðTÞ ¼ �ð1Þ exp½ E0

kBT
� observed at high temperatures

[1–3]. The Adam-Gibbs (AG) relation [4], which is of
central importance in glass forming liquids, explains the
behavior of the relaxation time, i.e., dynamics in terms of
the configurational entropy, i.e., thermodynamics. It also
forms the basis of more sophisticated theories of glass
transition connecting dynamics to thermodynamics, e.g.,
the random first order transition theory (RFOT) [5–9].
In these theories the spatial dimensionality (D) appears
explicitly in the relationship between dynamics and ther-
modynamics. However, the large number of experimental
and numerical studies wherein the AG relation has been
tested [10–17] have all been in three dimensions. The
present study aims to critically examine whether the AG
relation is valid in different spatial dimensions or gets
generalized in a D-dependent way.

The AG relation is based on the picture that relaxation
in glass forming liquids occurs through the collective
rearrangement of ‘‘cooperatively rearranging regions’’
(CRR). The CRRs define a minimum size of groups of
rearranging particles (atoms, molecules, etc., depending on
the nature of the glass former) such that smaller groups of
particles are incapable of rearrangement independently of
their surroundings. Adam and Gibbs argued that the con-
figurational entropy (the entropy associated with the multi-
plicity of distinct arrangements of particles, obtained by
subtracting a ‘‘vibrational’’ component from the total en-
tropy) per particle ScðTÞ of a liquid varies inversely as the
size of the CRR, zðTÞ, since the configurational entropy
per CRR, S�, is roughly independent of temperature:

ScðTÞ ¼ S�
zðTÞ . The further assumption that the free energy

barrier for a rearrangement is proportional to the size of the
CRR (�G ¼ z��, where �� is the chemical potential
barrier per particle) results in the AG relation:

�ðTÞ ¼ �ð1Þ exp
�
S�k�1

B ��

TScðTÞ
�
¼ �ð1Þ exp

�
C

TSc

�
: (1)

The above relation is obtained independent of reference
to the spatial dimensionality of the system and is hence
expected to be same in all spatial dimensions.
A rationalization of the AG relation, based on more

detailed considerations of possible activated relaxation
mechanisms, is offered by the RFOT, which has recently
been discussed by many authors specifically in the context
of growing length scales associated with the glass transi-
tion [18–24].
In the ‘‘mosaic’’ picture [5,7], the liquid is divided into

metastable regions of characteristic size �ðTÞ. The transi-
tion from one metastable state to others is hindered by the
cost of surface free energy (�Gs / Y��, where � � D,
where D is the spatial dimension and Y is the surface
tension) and driven by the possibility of sampling an ex-
ponentially large number of other metastable minima (free
energy gain �Gb / TSc�

D). There is a characteristic

crossover length ��ðTÞ / ð Y
TSc

Þ1=ðD��Þ above which a liquid

samples all metastable states and below which the liquid is
trapped in one of the metastable states. The characteristic
length �ðTÞ� diverges as SCðTÞ ! 0. Assuming, in general,
that the free energy barrier to relaxation varies (following
the notation of Ref. [9]) as �GðTÞ / �ðTÞc , one obtains

�ðTÞ ¼ �ð1Þ exp
�

A

ðTScÞc =ðD��Þ

�
; (2)

where A has weak T dependence, and c ¼ � if �GðTÞ is
calculated as the free energy barrier obtained from the
surface and bulk contributions above (�G¼�Gbþ�Gs).

PRL 109, 095705 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

31 AUGUST 2012

0031-9007=12=109(9)=095705(5) 095705-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.109.095705


The mosaic picture thus contains an explicit dependence
on the spatial dimension, and one recovers the AG relation

only when c
D�� ¼ 1. The original AG formulation is

equivalent to assuming c ¼ D, � ¼ 0, whereas it was
argued in Ref. [5] that � ¼ c ¼ D=2, with the AG relation
as the result in both cases. In the latter case [5], a dimen-
sion independent AG relation is predicted in spite of argu-
ments that treat spatial dimensions explicitly.

However, attempts to estimate the exponents either nu-
merically or from experimental data are not conclusive. By
direct simulation in a model liquid (D ¼ 3), Cammarota
et al. [22] obtained � ¼ 2, c ¼ 1 which, although consis-
tent with the AG relation, differs from both the AG and
RFOT values. The simulation study by Karmakar et al.
[23,24] obtained �� 2:3 and hence c � 0:7 using the

condition c
D�� ¼ 1. An extensive study by Capaccioli

et al. [20] of experimental data for 45 glass-forming liquids
shows a lot of variation in both � and c , with best fit
estimates in the range of �� 2–2:15, and c � 0:85–1.
These two studies are consistent in suggesting values of
� > 2, c < 1, but both use measures of dynamical hetero-
geneity to extract a length scale. Since a priori one must
expect the mosaic length to be distinct from the heteroge-
neity length scale, the implications of these estimates are
not clear.

In view of the considerations above, the possibility of an
explicit dependence of the AG relation on the spatial
dimension (and within the RFOT framework, the values
of the exponents � and c ) merits investigation. In this
Letter, we address the question of the dependence on
spatial dimension of the AG relation by studying model
liquids in two, three, and four dimensions and evaluating
the relationship between relaxation times and the config-
urational entropy. The evaluation of the RFOT exponents �
and c , while relevant to our investigation, requires the
calculation of the mosaic length scale. Ways of obtaining
length scales relevant to glassy dynamics that have been
discussed in the literature (see, e.g., Refs. [21,23,25,26])
tend to be computationally very demanding [27]. We have
therefore not attempted to evaluate the RFOT exponents in
this work.

One of the well-known systems in which the AG relation
is shown to be valid [15,23,28] is Kob-Andersen model
(KA) [29], which is an 80:20 binary mixture of particles
interacting with a Lennard-Jones potential, with Lennard-
Jones parameters �AB=�AA ¼ 1:5, �BB=�AA ¼ 0:5,
�AB=�AA ¼ 0:80, �BB=�AA ¼ 0:88. We truncate the inter-
action potential at 2:5��	 (details as in Ref. [15]). Units of

length, energy, and time scales are �AA, �AA and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
AAmAA

�AA

r
,

respectively. We have studied the KA model in two (2D),
three (3D), and four (4D) spatial dimensions. In addition,
in two dimensions we have studied the following liquids:
(1) KA model at 65:35 composition [30] which is denoted
as the modified KA (MKA) model and (2) 50:50 binary

mixture of repulsive soft spheres [R10 model, VðrÞ � r�10]
(see Ref. [31] for details of the model. Like the KAmodels,
we use reduced units defined in terms of the energy scale of
the model and the size of the large particles). We have
performed molecular dynamics simulations in the canoni-
cal (NVT) ensemble, using the constant temperature algo-
rithm of Brown and Clarke [32]. Simulations were done at
a fixed number density 
 (
 ¼ 1:2 for the KAmodel in two
and three dimensions, 
 ¼ 1:6 in four dimensions, 
 ¼ 1:2
for the MKA model, and 
 ¼ 0:85 for the R10 model).
Integration time steps were in the range 2 ½0:001; 0:006�
depending on T. Run lengths at each T were in excess of
100�� (the relaxation time �� is defined below) (e.g., at the
lowest T in 4D, the total run length is�6� 108 MD steps).
The range of relaxation times accessed is up to Oð104Þ in
three and four dimensions and up to Oð105Þ in two dimen-
sions. Typically, three (1–3 in 4D, 3–5 in 3D and 2D)
independent runs are performed at each T. In order to
assess the influence of system size, we show results for
different system sizes in two and three dimensions (indi-
cated in appropriate places) although we do not discuss
system size effects in detail here.
As a measure of dynamics, we have studied a two-point

time correlation function, the overlap function qðtÞ and
its fluctuation related to dynamic susceptibility [�4ðtÞ]
[23,33–35],

<qðtÞ> ¼ <
Z

d~r
ð ~r; t0Þ
ð ~r; tþ t0Þ>

�<
XN
i¼1

wðj~riðt0Þ � ~riðt0 þ tÞjÞ>

�4ðtÞ ¼ 1

N
½hqðtÞ2i � hqðtÞi2�; (3)

where 
ð ~r; t0Þ is the space- and time-dependent particle
density, wðrÞ is the window function, wðrÞ ¼ 1, r � a and
zero otherwise (a ¼ 0:3 in 3D), and averages are obtained
over initial times t0 as well as independent samples.
Relaxation times are estimated both from the condition
hqð�Þi=N ¼ 1=e (��) and the characteristic time where
�4ðtÞ is maximum (�4). As we find these two times to be
proportional to each other [23], we report only ��.
The configurational entropy (Sc) per particle, the mea-

sure of the number of distinct local energy minima, is
calculated [36] by subtracting from the total entropy of
the system the ‘‘vibrational’’ component,

ScðTÞ ¼ StotalðTÞ � SvibðTÞ: (4)

The total entropy of the liquid is obtained via ther-
modynamic integration [36]. The vibrational entropy is
calculated by making a harmonic approximation to the
potential energy about local energy minima (termed
‘‘inherent structures’’) [36–39].
We evaluate the configurational entropy below the

onset temperature (Tonset) across which a crossover from
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Arrhenius to non-Arrhenius behavior of the relaxation
time occurs [15,40,41]. In Fig. 1(a) we show this cross-
over in the 4D KA model. Figure 1(b) shows the tempera-
ture variation of the inherent structure energy which
exhibits a 1=T temperature dependence below Tonset [15].
In Fig. 1(c), we show the T dependence of the configura-
tional entropy for the 4D KA model. As T is lowered TSc
goes to zero linearly with T. We estimate the Kauzmann
temperature (TK) at which the extrapolated configurational
entropy vanishes to be TK ¼ 0:53.

In Fig. 2, we show the AG plot for the KA model in
different spatial dimensions. We see that in 4D, the AG
relation is valid over several orders of magnitude of change
in ��. As reported in earlier works, the AG relation is also
valid in 3D, and the data presented in Fig. 2(b) indicates a
mild system size dependence in the slopes C [Eq. (1)].
However, in two dimensions [Fig. 2(c)], we see deviations
from the AG relation for low temperatures and small
system sizes. It has been reported recently that the 2D
KA model is prone to orientational ordering [30], which
we confirm (data not shown). It is therefore not clear to
what extent these observed deviations are significant. In
order to ascertain the dependence of �� on Sc without the
presence of orientational ordering, we study two other
previously studied 2D models which do not exhibit signifi-
cant ordering, namely the KA model with composition
65:35 (MKA) [30] and the 50:50 binary mixture of
repulsive soft spheres [R10 model, VðrÞ � r�10] [31].
Figures 3(a) and 3(b) show that for these systems, ��
does not obey the AG relation.

We note that the nature of deviation is different in
these two cases. Fitting �� to the generalized AG form
� ¼ �0 exp½ð C

TSc
Þ��, we find � ¼ 0:43 for N ¼ 500,

� ¼ 0:60 for N ¼ 2000 and � ¼ 0:67 for N ¼ 10000
(i.e., �< 1) for the MKA model, whereas for the R10
model we find � ¼ 2:1 (i.e., �> 1).

The MKA model has both attractive and repulsive inter-
actions, whereas the R10 model has purely repulsive inter-
actions. It has recently been suggested [25] that the

exponent c in the relation �ðTÞ ¼ �ð1Þ exp½A�c

kBT
� [see dis-

cussion preceding Eq. (2)] depends on the nature of the
interactions. This possibility suggests an explanation for
the results we observe which is under investigation.
However, we note that in three dimensions, the AG relation
has been verified in both attractive models (e.g.,
Kob-Andersen [15], Lewis-Wahnström orthoterphenyl
[16], and Dzugutov liquid [42]) and repulsive models
(e.g., repulsive soft spheres [43]). We also note that the
exponent � above gets larger for larger system sizes for the
MKA model. Although N ¼ 10000 is a sufficiently large
system as far as any relevant length scale in this model is
concerned, finite-size effects as the origin of the deviation
from the AG relation in these systems cannot be com-
pletely ruled out at present. Finally, we note that the
behavior described here remains qualitatively the same if
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FIG. 1 (color online). (a) Temperature dependence of the
relaxation time �� of the 4D KA model displaying a crossover
from Arrhenius to non-Arrhenius behavior at Tonset � 1. The
solid line is an Arrhenius fit above Tonset. (b) shows the average
inherent structure energy vs T displaying a 1=T dependence
below Tonset. (c) Kauzmann temperature for the 4D KA model,
TK ¼ 0:53, is obtained from the condition TKScðTKÞ ¼ 0.
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we use inverse diffusivities instead of �-relaxation times.
Such a comparison will be presented elsewhere [44] in
the context of the breakdown of the Stokes-Einstein
relation [45].
In summary, we examine the validity of the AG relation

in different spatial dimensions by studying model liquids
via computer simulations, for the first time in two and four
dimensions. The AG relation is valid in four and three
dimensions but is not obeyed in two dimensions, and the
nature of the deviation from the AG relation depends on the
details of the interaction between particles. This is an
unexpected result. Although an understanding of this ob-
servation is lacking at present, they present constraints that
a successful theoretical explanation of slow relaxation

3 4 5 6 7 8 9 10 11 12

(TS
c
)

-1
 / ε

AA

-1

10
0

10
1

10
2

10
3

10
4

10
5

τ α   
/  

[ 
σ A

A
ε A

A1/
2
 m

A
A-1

/2
]

N=10000
N=2000
N=500

2D MKA 65:35

(a)

1 2 3 4

(TS
c
)
-1

 / ε
AA

-1

10
0

10
1

10
2

10
3

10
4

10
5

τ α   
/  

[ σ
A

A
ε A

A1/
2  m

A
A

-1
/2

]

2D R10

(b)

FIG. 3 (color online). Adam-Gibbs plot for the MKA and R10
models. Systematic deviations from the AG relation are seen for
both models but with opposite deviations from linearity. For the
MKA model, the lines are fits to the generalized AG relation of
the form �� ¼ �0 exp½ð C

TSc
Þ�� [see also Eq. (2)] [� ¼ 0:43 for

N ¼ 500 (dashed), � ¼ 0:60 for N ¼ 2000 (dotted line), and
� ¼ 0:67 for N ¼ 10000 (solid line)]. For the R10 model, the
dashed line is a fit to the AG relation and the solid line is a fit to
the generalized AG relation with � ¼ 2:1. The system size is
N ¼ 2048 for the R10 model.
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FIG. 2 (color online). Adam-Gibbs plots [�� vs ðTScÞ�1] for
the KA model in four, three, and two dimensions. The AG
relation holds in three and four dimensions but deviations are
observed in two dimensions at low T and small system sizes.
The system size in 4D is N ¼ 1500. Lines are fits to the AG
relation [Eq. (1)] (for the largest system size in the case
of 2D).
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must meet. Such a lack of universality is unexpected and
surprising since both AG and RFOT theories describe the
glass transition as a thermodynamic phase transition.
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