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We present an experimental study of density and order fluctuations in the vicinity of the solid-liquid-

like transition that occurs in a vibrated quasi-two-dimensional granular system. The two-dimensional

projected static and dynamic correlation functions are studied. We show that density fluctuations,

characterized through the structure factor, increase in size and intensity as the transition is approached,

but they do not change significantly at the transition itself. The dense, metastable clusters, which present

square symmetry, also increase their local order in the vicinity of the transition. This is characterized

through the bond-orientational order parameter Q4, which in Fourier space shows an Ornstein-Zernike-

like behavior. Depending on the filling density and vertical height, the transition can be of first- or second-

order type. In the latter case, the associated correlation length �4, the relaxation time �4, the zero k limit of

Q4 fluctuations (static susceptibility), the pair correlation function of Q4, and the amplitude of the order

parameter obey critical power laws, with saturations due to finite size effects. Their respective critical

exponents are �? ¼ 1, �k ¼ 2, � ¼ 1, � ¼ 0:67, and � ¼ 1=2, whereas the dynamical critical exponent

z ¼ �k=�? ¼ 2. These results are consistent with model C of dynamical critical phenomena, valid for a

nonconserved critical order parameter (bond-orientation order) coupled to a conserved field (density).

DOI: 10.1103/PhysRevLett.109.095701 PACS numbers: 64.60.Ht, 05.40.�a, 45.70.�n, 64.70.qj

Introduction.—A dry granular system is an athermal
collection of macroscopic particles that interact mainly
through dissipative, hard corelike, collisions. They behave
as solids, liquids, or gases depending on the nature of the
forces that act upon them and the energy injection rate [1].
These systems present phase transitions and coexistence.
Simple examples are a thin layer of vibrated sand, which for
small driving amplitudes remains solid but can be com-
pletely fluidized for larger accelerations, and an avalanche
driven by gravity where a thin layer of grains flows above an
almost solid pile. Granular systems are therefore excellent
candidates for studying nonequilibrium phase transitions
[2,3]. In vibrated thin layers energy is transferred from the
top and bottom lids to the vertical motion of the grains,
which later transfer the energy to the horizontal motion at
collisions that are also dissipative. The sequence breaks the
detailed balance, keeping the system out of equilibrium.

Recently, several granular systems that undergo interest-
ing phase transitions have been reported [4–15]. One par-
ticular system is a vibrated fluidized granular monolayer
composed of N hard spheres of diameter d confined in a
shallow cell of height Lz < 2d (typically Lz � 1:7d–1:9d).
Under proper conditions, solid and liquid phases can coex-
ist at mechanical equilibrium [4,10,11,14]. The solid clus-
ters can present different order symmetries, like square or
hexagonal, depending on forcing, geometrical, and particle
parameters. It has been reported that for Lz � 1:7d–1:8d
and for a large range of filling densities, the most compact
structure in quasi two dimensions is made of two layers of
square symmetry. The more compact hexagonal structure
formed by two layers needs a larger vertical gap or larger

densities [11]. The critical amplitude above which there is
coexistence decreases with increasing density.
Many of the previous works on granular phase transi-

tions focus on the similarities or comparisons of such
nonequilibrium systems with equilibrium phase transitions
[4,10–13,15]. For example, the equilibrium KTHNY theory
has proven useful in the two dimensional (2D) melting of
granular monolayers [12]. Here we focus on a dynamical
critical phase transition in a nonequilibrium quasi-2D
granular system. We present an experimental study of the
solid-liquid phase transition in a vibrated fluidized granular
monolayer. The solid phase consists of two square interlaced
layers, stabilized by the collisions with the top and bottom
walls and the confining pressure exerted by the liquid phase
[11,14]. We focus on density and bond-orientation order
fluctuations in the vicinity of the transition. We show that
the transition can be continuous or abrupt depending on the
cell’s height and filling density. Density fluctuations show a
crossover behavior at the transition, whereas the order shows
strong fluctuations. In the continuous case several magni-
tudes show critical-like behavior making it possible to mea-
sure five independent critical exponents. These results are
consistent with model C of dynamical critical phenomena
[16], valid for a nonconserved critical order parameter (bond-
orientation order) coupled to a conserved field (density).
Experimental setup and procedures.—The experimental

device is similar to the one described in Ref. [17]. The
granular system is composed of N � 104 stainless steel
spherical particles of diameter d ¼ 1 mm. The quasi-two-
dimensional box has lateral dimensions Lx ¼ Ly � L ¼
100d. In order to study the different possible transitions,
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first- or second-order type, two configurations are used:
Lz ¼ 1:83d� 0:02d and N ¼ 9878, or Lz ¼ 1:94d�
0:02d and N ¼ 11504. These are labeled configurations 1
(C1) and 2 (C2), respectively. The surface coverage is
defined by the filling fraction � ¼ N�d2=4L2 (�C1 ¼
0:776 and �C2 ¼ 0:904).

The whole setup is forced sinusoidally with an electro-
mechanical shaker, with displacement zðtÞ ¼ A sinð!tÞ.
Top view images are obtained with a camera at 10 fps.
Particle positions are determined at subpixel accuracy.
Results have been obtained by fixing the particle number
N, cell height Lz, and driving frequency f ¼ !=2� ¼
1=T ¼ 80 Hz. The dimensionless acceleration � ¼
A!2=g is varied in the range 1–6.

Static structure function.—Particle positions ~rjðtÞ
in the plane (x, y) are determined for each time t.
Experimentally, there is no access to the z coordinate.
Thus, the two-dimensional microscopic density field
Fourier components are

	̂ð ~k; tÞ ¼
Z

d2rei~r� ~k	ð ~r; tÞ ¼ XN
j¼1

ei
~k�~rjðtÞ: (1)

The static structure factor Sð ~kÞ measures the intensity of
the density fluctuations in Fourier space:

Sð ~kÞ ¼ hj	̂ð ~k; tÞ � h	̂ð ~k; tÞij2i
N

; (2)

where hi denotes time averaging. In general h	ð ~k; tÞi � 0,
due to inhomogeneities induced by boundary conditions.

The wave vectors are computed from ~k ¼ �ðnx{̂þ ny|̂Þ=L,
where nx, ny 2 N.

In the liquid phase (�< �c) we have verified that the

system is isotropic, Sð ~kÞ ¼ SðkÞ, where j ~kj � k. In the
phase separated regime this quantity is not well defined
as density fluctuations should in principle behave differ-
ently in each phase. However, as it is not easy to determine
�c precisely, we use this quantity as a possible relevant

measurement in the vicinity of the solid-liquid phase sepa-
ration, even above the critical amplitude.
Figure 1(a) presents SðkÞ obtained forC2 (the qualitative

features are the same for both configurations and their
differences will be pointed out explicitly later). The main
figure presents the long-wavelength range, kd � 1, for four
� below �c. The inset presents SðkÞ for a larger range of k.
It has the usual form expected for liquids with short range
order, but with a prepeak located in the range kd ¼
0:1–0:3. The associated density fluctuations are indeed
visible by simple visual inspection [18].
The prepeak is characterized by its maximum value at

k�, Smax � Sðk�Þ, and the associated characteristic length
scale � ¼ �=k�. These quantities are plotted in Figs. 1(b)
and 1(c) as functions of � for increasing amplitude ramps
and for both configurations. They both increase as the
transition is approached. The difference between the con-
figurations is mainly manifested in the shape of each curve,
with their final values (near the transition) very similar,
Smax � 0:5–0:8 and �=d � 20–30. By observing visually
the persistence of the solid clusters we conclude that forC1
the transition is located at �c � 2. For C2 it is more
difficult to determine with the same precision but it is
found to be �c � 5. However, neither Smax or � show
evident changes at these values.
Density fluctuations do not show critical behavior, but

they are needed to create regions of high order. Similar
density fluctuations have been observed in amorphous
materials [19,20], which have been consistently related to
the existence of medium range crystalline order. In our
case, medium range order will be analyzed with an appro-
priate bond-orientational order parameter, which presents
critical behavior.
Bond-orientational order parameter.—In the vicinity of

the transition, fluctuations of high density present the same
square symmetry as the solid phase. In the quasi-2D ge-
ometry the solid phase consists of two square interlaced
layers instead of the hexagonal layer that is characteristic
of 2D systems [11]. The local order can be characterized
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FIG. 1 (color online). (a) SðkÞ in the large wavelength limit for four different accelerations, � ¼ 2:13, 2.74, 3.18, and 4.79 (C2). Open
symbols correspond to raw SðkÞ data, whereas solid symbols correspond to averages using windows k 2 ½nkmin; ðnþ 1Þkmin	 for
integer n 
 1, where kmin ¼ �=L. Error bars correspond to standard deviations. The inset shows SðkÞ for a larger range of k for
� ¼ 3:64. (b) Prepeak maximum Smax � Sðk ¼ k�Þ, which occurs at k ¼ k�, and (c) associated length scale � ¼ �=k� as functions of
� for C1 (open symbols) and C2 (closed symbols).
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through a fourfold bond-orientational order parameter.
This is still valid in our quasi-2D geometry because the
interlaced two-layer square lattices (with unit cell length d
in each plane) result also in a square lattice when projected

in two dimensions, with unit cell length
ffiffiffi
2

p
d=2 when the

grains are close packed. The fourfold bond-orientational
order parameter per particle is defined as [21]

Qj
4 ¼

1

Nj

XNj

s¼1

e4i

j
s ; (3)

where Nj is the number of nearest neighbors of particle j

and 
j
s is the angle between the neighbor s of particle j and

the x axis. For a particle in a square lattice, jQj
4j ¼ 1 and

the complex phase measures the square lattice orientation
with respect to the x axis. The corresponding global aver-
age and Fourier components are

hjQ4ji ¼
�
1

N

XN
j¼1

jQj
4j
�
; Q̂4ð ~k; tÞ ¼

XN
j¼1

Qj
4e

i ~k� ~rjðtÞ:

(4)

The average hjQ4jimeasures the fraction of particles in the
ordered phase. This quantity is presented in Fig. 2 as
function of � for both configurations. Results for increas-
ing (decreasing) � ramps are represented by open (solid)
symbols. Two ramp rates are also reported: slow ramps, for
which a quasistatic state has been reached, and fast ramps,
for which it has not. The difference between both configu-
rations is evidenced in the jump of about 10% that is
measured for hjQ4ji at the transition for C1. Moreover,

the position of this jump depends on the � ramp rate: for
the slow rate the increasing and decreasing ramp jumps
coincide, whereas for faster ramps the increasing (decreas-
ing) ramp jump occurs at higher (lower) �. We use the slow
ramp data to obtain a measurement of the critical accel-
eration, �C1

c ¼ 2:01� 0:03. By contrast, the results
obtained for C2 show first a linear trend for low � and a
clear deviation around � � 5:1, with no measurable jump.
In fact, the deviation from the linear behavior obeys a
supercritical-like law. For �> 5:2 we have fitted the data
with the function �Q4 ¼ hjQ4ji �QL

4 ¼ cð�� �cÞ�,
where QL

4 is the extrapolation of the linear trend observed
for lower �. We obtain c ¼ 0:029� 0:002, �C2

c ¼ 5:12�
0:01, and the exponent of the order parameter amplitude is
� ¼ 1=2. Within experimental error, the decreasing ramps
also coincide with the increasing ramps in this configura-
tion [18]. Consequently, the transition for configuration C1
is abrupt, of first-order type, whereas for C2 it is continu-
ous, of second-order type.
Local order can also be analyzed through its fluctuations

in Fourier space by means of the fourfold bond-
orientational structure factor

S4ð ~kÞ ¼ hjQ̂4ð ~k; tÞ � hQ̂4ð ~k; tÞij2i
N

: (5)

For both configurations and for �< �c, S4ðkÞ shows an
Ornstein-Zernike-like behavior in the limit kd � 1 [18],
S4ðkÞ � S4ð0Þ=½1þ ð�4kÞ2	, where �4 and S4ð0Þ are the
fourfold bond-orientational correlation length and static
susceptibility, respectively.
For configuration C1, the fourfold bond-orientational sus-

ceptibility S4ð0Þ and normalized correlation length �4=d
vary weakly as the transition is approached [Fig. 3(a)].
Defining the reduced acceleration " ¼ ð�c � �Þ=�c, we
obtain that for 0:005< "< 0:4, S4ð0Þ and �4=d vary in
the ranges 0.25–0.5 and 0.5–0.7, respectively. The fact that
S4ð0Þ< 1 and �4=d < 1 implies that fluctuations of the
global fourfold bond-orientational order parameter are
weak and that there is practically no order correlation below
the first-order type transition.
For C2 the situation is markedly different. Fig. 3(a)

shows that S4ð0Þ and �4=d vary strongly as the transition
is approached. In the limit " ! 0 they both saturate, pre-
sumably due to the system’s finite size. For " & 3� 10�2

they saturate to S4ð0Þ � 20 and �4=d � 10, respectively.
This figure also demonstrates that both quantities follow
the critical-like behavior,

S4ð0Þ ¼ ~a"��; �4=d ¼ ~b"��? ; (6)

with the critical exponents � ¼ 1 and �? ¼ 1. The critical
divergence with " makes it necessary to fit the �c sepa-
rately for each case; for details on the procedure see the
Supplemental Material [18]. The adjusted critical acceler-
ations are �C2

c ¼ 5:09� 0:07 and �C2
c ¼ 5:24� 0:08,

respectively. Within experimental error both critical accel-
erations are very consistent, as well as with the value
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FIG. 2 (color online). Average global fourfold bond-
orientational order parameter hjQ4ji versus � for C1 (a) and
C2 (b). Open (solid) symbols represent data obtained for in-
creasing (decreasing) � ramps, with the following rates:
��=�t�0:005min�1 (4, .) and ��=�t�0:02min�1 (
 , �).
Continuous lines in (b) correspond to fits of the linear trend
QL

4 ¼ a�þ b for 2:5< �< 5, with a ¼ 0:011� 0:001 and

b ¼ 0:380� 0:002, and a supercritical-like behavior hjQ4ji ¼
QL

4 þ cð�� �cÞ�, with � ¼ 1=2, observed for � * 5.
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obtained from the supercritical behavior of �Q4 (�C2
c ¼

5:12� 0:01). Notice that now �c is obtained from fits of
measured quantities below the transition, whereas before it
was obtained with a fit of the order parameter above the
transition.

In the hydrodynamic regime (d=�4 & kd � 1) and in
the vicinity of the transition, the bond-orientational struc-

ture factor is theoretically expected to behave as S4ðkÞ ¼
C1k�ð2��Þ. When � ¼ 5:10 a power-law behavior is in-
deed observed in the range 0:1 � kd � 1 with an anoma-
lous exponent � ¼ 0:67� 0:01 [18].

Asfinal evidence of the observed criticalitywe now turn to
the characterization of the relaxation time of the metastable
solid clusters. The relaxation time is computed through the
two-time bond-orientational correlation function

F4ð ~k; �Þ ¼ h�Q̂4ð ~k; tþ �Þ�Q̂4ð ~k; tÞ�i
N

; (7)

where * stands for the complex conjugate and �Q̂4ð ~k; tÞ ¼
Q̂4ð ~k; tÞ � hQ̂4ð ~k; tÞi. Our results show that for low wave

vectors F4ð ~k; �Þ � F4ð ~k; 0Þ expð� �=�4ðkÞÞ, from which
the relaxation time �4ðkÞ is measured. Here, we also obtain
a critical-like behavior, which is presented in Fig. 3(b). The
best fit is obtained for �4=T ¼ ~c"��k with�k ¼ 2, for which
the adjusted critical acceleration is �C2

c ¼ 5:12� 0:07. The
relaxation time also seems to saturate for small ", which
occurs at smaller " for lower k, that is, for fluctuations of
larger size. The inset of Fig. 3(b) confirms that �4 � ð�4Þz,
with a dynamical exponent z ¼ �k=�? ¼ 2. As usual, there
is a critical slowing down in the dynamics.As a consequence,
close to the critical point, stationary states are obtained after a
long relaxation has taken place. Taken that into account, all�
ramps for C2 are slow. Also, averages are taken for long
times.
Critical dynamics.—Five critical exponents have been

obtained from the analysis of the order parameter. In the
standard notation of critical phenomena these are � ¼
1=2, � ¼ 1, � ¼ 0:67, �? ¼ 1, and z ¼ 2. In equilibrium,
the scaling hypothesis predicts relations among the critical
exponents. It is worth mentioning that the relation � ¼
ð2� �Þ�? is not satisfied, while 
þ 2�þ � ¼ 2 and
�?D ¼ 2� 
 (D ¼ 2 is the spatial dimension) can be
satisfied simultaneously if 
 ¼ 0. This exponent, associ-
ated in equilibrium to the specific heat divergence, has no
clear interpretation out of equilibrium.
The order parameter in the present case is a noncon-

served complex scalar field. Its dynamics, however, is not
expected to be autonomous even close to the critical point
as density fluctuations are needed to create the ordered
phase. Although it has been shown that the transition
dynamics is mediated by waves [14], the momentum den-
sity decays fast due to friction. Therefore, the most appro-
priate description in the theory of dynamical critical
phenomena is model C, in which a nonconserved order
parameter is coupled to a conserved noncritical density
[16]. In this case [16,22] and in extensions to nonequilib-
rium dynamics [23], the dynamical exponent is predicted
to be z ¼ 2þ 
=�?, consistent with the measurements
if 
 ¼ 0.
Conclusions.—We have demonstrated that the nonequi-

librium solid-liquid transition that occurs in a shallow,
quasi-two-dimensional granular system can be of either
first- or second-order type depending on the vertical height
and filling density. This seems counterintuitive, because it
is widely believed that a solid-liquid phase transition can
only be of first-order. However, motivated by observations
inside carbon nanotubes recent molecular dynamic simu-
lations show that in confined water nanofilms the transition
to a solid phase can be either of first or second order,
depending on the filling density [24]. In our experiments,
for both cases density fluctuations do not show strong
variations at the transition. On the contrary, local order
varies strongly, either abruptly in the first-order type
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FIG. 3 (color online). (a) S4ð0Þ ( 
 ,�) and �4=d (h, j) versus
" for C1 (solid symbols) and C2 (open symbols). (b) �4=T versus
" for C2, for three different low k. Continuous lines show critical
power law fits, with exponents � ¼ �? ¼ 1 for S4ð0Þ and �4,
and �k ¼ 2 for �4. The fitted critical accelerations are �C2

c ¼
5:09� 0:07, �C2

c ¼ 5:24� 0:08, and �C2
c ¼ 5:12� 0:07, re-

spectively. The inset of (b) presents �4 versus �4 for " > 0:03.
The continuous line shows a fit �4 � ð�4Þz, with the dynamical
exponent z ¼ �k=�? ¼ 2.
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transition, or continuously in the second-order type con-
figuration. The continuous transition presents critical-like
behavior, with exponents consistent with model C of dy-
namical critical phenomena.
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