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Complete Topology of Cells, Grains, and Bubbles in Three-Dimensional Microstructures
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We introduce a general, efficient method to completely describe the topology of individual grains,
bubbles, and cells in three-dimensional polycrystals, foams, and other multicellular microstructures. This
approach is applied to a pair of three-dimensional microstructures that are often regarded as close
analogues in the literature: one resulting from normal grain growth (mean curvature flow) and another
resulting from a random Poisson-Voronoi tessellation of space. Grain growth strongly favors particular
grain topologies, compared with the Poisson-Voronoi model. Moreover, the frequencies of highly
symmetric grains are orders of magnitude higher in the grain growth microstructure than they are in
the Poisson-Voronoi one. Grain topology statistics provide a strong, robust differentiator of different
cellular microstructures and provide hints to the processes that drive different classes of microstructure

evolution.
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Characterizing the microstructure of materials has
occupied an important place in much theoretical, experi-
mental, and computational work over the last fifty years.
Such microstructures include the cellular structure of
foams, polycrystalline materials and biological systems.
Different cellular structures share many features in com-
mon, yet even rudimentary analysis shows that structures
resulting from different formation or evolution processes
can be startlingly different. For example, Poisson-Voronoi
tessellation of space yields a microstructure that is akin to
those produced by crystallization or recrystallization [1],
while structures that evolve through curvature flow de-
scribe normal grain growth structures [2]. Despite the
differences in the resulting structures, the former is often
assumed to accurately represent experimental systems,
despite the fact that the latter may be more suitable. This
is important because such structural differences can lead to
markedly different physical properties.

Describing grains of such microstructures involves mea-
suring not only their geometric features such as mean cell
size and aspect ratio, but also their topological features.
Historically, the topology of an individual grain has been
commonly described using only its number of faces (e.g.,
see [3,4]); this is motivated both by the fact that this is a
relatively straightforward measurement and because of its
analogy to key features of the rigorous theory of two-
dimensional grain growth [5,6]. The simplicity of this
characterization allows for easy gathering and succinct
presentation of data and has been widely applied experi-
mentally and in theory and simulations. While the number
of faces of a grain is a basic topological descriptor, it is
clearly incomplete; consider the two topologically distinct
six-faced grains in Fig. 1. In this Letter, we present a new
method of completely describing the topology of grains or
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cells within three-dimensional microstructures and apply it
to show several stark differences between the Poisson-
Voronoi and normal grain growth microstructures.

A more detailed topological description was introduced
by Matzke [7] for bubbles in soap foams. Matzke charac-
terized a large population of bubbles by recording the total
number of faces and the number of edges of each face in
each bubble. This method distinguishes between the two
grains in Fig. 1—the first contains six quadrilateral faces;
the second two triangular, two quadrilateral, and two pen-
tagonal faces. We associate a vector of non-negative inte-
gers with each grain: the ith entry counts the number of
i-sided faces. Following [8], we call this the p vector of a
grain. The grains illustrated in Fig. 1 have distinct p
vectors (0022200...) and (0006000...). This facilitates a
more detailed characterization of the topology of a grain
than does recording only its number of faces; for example,
it allows the determination of the fraction of 12-faced
grains that are pentagonal dodecahedra.

Although powerful, this approach has not been widely
applied. Historically, obtaining and analyzing large grain
growth or bubble microstructures (by experiment or simu-
lation) have been quite difficult. Many recent large grain
growth simulations use methods that do not directly lend
themselves to topological analysis—phase field [9],
Monte Carlo [10], and diffusion-based [11] simulations
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FIG. 1. Two topologically distinct six-faced grains.
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employ implicit descriptions of grain shape, complicating
accurate topological analysis. On the other hand, front-
tracking, three-dimensional grain growth simulations
[12,13] produce large microstructures from which grain
topology may be readily extracted [14]. The statistics
reported below include contributions from 25 steady-state
normal grain growth microstructures [14], each containing
about 10782 grains (i.e., 269555 grains in total). A
Poisson-Voronoi microstructure, generated by a Voronoi
tessellation of 269 555 Poisson-distributed points in the
periodic unit cube, is used as a comparative microstructure.

Table I enumerates the most common p vectors in the
Poisson-Voronoi and grain growth microstructures. Two
differences between the microstructures are readily appar-
ent. All of the frequently occurring p vectors in the
Poisson-Voronoi microstructure contain at least one trian-
gular face. By contrast, not one of the frequently occurring
p vectors in the grain growth structures contains a trian-
gular face. Also, almost all frequently occurring p vectors
in the Poisson-Voronoi structure contain at least one hep-
tagonal face, while the frequently occurring p vectors in
the grain growth structures do not.

One might attribute this discrepancy to the higher fre-
quency of triangular faces in the Poisson-Voronoi micro-
structure than in the grain growth microstructure, because
13.5% of all faces are triangular in the former and only

TABLE I. Lists of the eight most common p vectors, their
number of faces F, and their frequencies f in the Poisson-
Voronoi and grain growth microstructures. The relative errors
in the p-vector frequencies are less than 4% for the Poisson-
Voronoi microstructure and less than 2% for the grain growth
one.

Poisson-Voronoi

F p vector f (%)
12 (001343100...) 0.39
11 (001342100...) 0.33
13 (001433200...) 0.30
13 (002333110...) 0.29
9 (001332000...) 0.28
13 (001344100...) 0.28
13 (001352200...) 0.28
11 (001423100...) 0.28
Grain growth
F p vector f (%)
8 (000440000....) 2.83
10 (000442000. .. .) 2.38
9 (000360000. .. .) 1.86
11 (000443000....) 1.86
9 (000441000...) 1.63
7 (000520000. .. .) 1.48
12 (000363000. . .) 1.45
10 (000361000...) 1.43

4.3% are triangular in the latter [14]. However, this fails to
account for differences with respect to heptagonal faces.
Whereas 11.6% of faces are heptagonal for the Poisson-
Voronoi microstructure, the corresponding frequency is
8.4% for the grain growth case. Although these frequencies
differ by less that 50%, almost all of the most frequent p
vectors in the Poisson-Voronoi structure have some hep-
tagonal faces, whereas none of those in the grain growth
structure have. This large difference cannot be accounted
for by the difference in the frequencies of heptagonal faces
alone.

A second and perhaps more striking difference between
the structures is the manner in which p vectors are distrib-
uted. In the grain growth microstructure, the eight most
common p vectors account for almost 15% of all grains,
while they account for less than 2.5% in the Poisson-
Voronoi case. Because the process of normal grain growth
drives the reduction in grain boundary area per unit vol-
ume, this favors more equiaxed grains. Presumably, this is
achieved more readily with certain combinations of poly-
gons on the surfaces of grains than others, leading to the
observed selectivity of the grain growth process.

Although a p vector offers a more refined description of
a grain than a mere count of its faces, it too is incomplete.
Consider that a fixed set of polygonal tiles can be arranged
on the boundary of a grain in multiple topologically dis-
tinct ways. Figure 2 illustrates two such distinct grains
which share a p vector.

A complete characterization of three-dimensional grain
topology can be built on Weinberg’s work [15,16] which
considers the problem of determining if two triply con-
nected planar graphs are isomorphic. He introduced an
encoding of the topological structure of such graphs into
a vector of integers and showed that the two graphs are
isomorphic if and only if these vectors are identical. We
employ this approach to encode the topology of each grain
and use these to catalog distinct topological types and their
frequencies in various microstructures.

The first step is to reduce a three-dimensional grain
topology to a vertex-edge planar graph—a Schlegel diagram
[17]—as shown in Fig. 3. The Schlegel diagram can be
constructed by projecting the polyhedron onto one of its
faces (the vertices which do not belong to that face lie inside
the face onto which the polyhedron is projected). This
allows us to use ““right turn” and “left turn” unambiguously
when “traveling” along a path in the graph. An initial vertex
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FIG. 2. Two topologically distinct grains that share p vector
(00222200. . .). In the first, two triangular faces are connected by
an edge, whilst in the second they are not.
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FIG. 3. A typical grain and a corresponding Schlegel diagram
(the embedding of the vertex-edge graph in the plane).

is chosen and assigned the label 1; that label is appended to
an initially empty vector. Next, one of that vertex’s three
adjacent edges is chosen and travel begins along that edge.
These rules are then followed: (1) When an unlabeled vertex
is reached, label it with the next largest unused integer,
append that label to the vector, and then ‘“‘turn right” and
continue traveling in the graph. (2) When a previously
labeled vertex is reached, append its label to the vector
and then: (a) If this vertex is reached by traveling along an
edge that has not been traversed, return to the previous
vertex along the same edge but in the opposite direction.
(b) If this vertex is reached by traveling along an edge that
has been traversed (in the opposite direction), “‘turn right”
and continue traveling; if that right-turn edge has previously
been traversed in that direction, “turn left” and continue
traveling; if that left-turn edge has also been traversed, stop.

Figure 4 illustrates the process of constructing a vector
for the graph of a typical grain. An initial vertex and edge
are chosen, and a path through the graph is followed
according to rules (1) and (2); vertices are labeled in the
order they are visited. The vector for this particular path in
the grain is 1234145616265354321.

When we stop, each edge has been traversed exactly
once in each direction; each vertex has been visited exactly
three times (starting or ending vertices are visited four
times). The path through the graph is recorded as a vector
of vertex labels. This vector depends only on the topologi-
cal structure of the grain and on the choice of initial vertex
and edge, but not on any prior labeling of the vertices.

Other vectors for a grain are produced by repeating this
procedure for other initial vertices and initial edges, and
likewise for the mirror image of the grain. This procedure
yields 4E vectors for each graph with E edges; each vector
is a list of 2E + 1 integers. Because the grain topology can
be reconstructed from any of the vectors, we need only
record one vector per grain. We call the lexicographically
(numerical or alphabetical order) first vector the Weinberg
vector of the grain.

Although 4FE vectors are constructed for each grain,
vertex-edge graphs containing mirror and rotational sym-
metries will have fewer unique ones. The order S of the
symmetry group associated with a grain is the number of
total vectors divided by the number of unique vectors. The
grain in Figs. 3 and 4 contains £ = 9 edges and only three
unique vectors; hence, the order of its symmetry group is
S=4E/3 = 12.
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FIG. 4. Vertices are labeled as they are initially encountered
while traversing the graph following rules (1) and (2); the vector
lists all vertices in the order in which they have been visited.

Schlegel diagrams associated with the eight most com-
mon Weinberg vectors in the Poisson-Voronoi and grain
growth microstructures are shown in Fig. 5, along with the
associated number of faces F, the p vector, the order S of
the symmetry group, and their frequencies f; the corre-
sponding Weinberg vectors are listed in Tables SII and STIT
of the Supplemental Material [18].

As noted with respect to the p vectors, the distribution of
Weinberg vectors is much more concentrated in the grain
growth microstructure than in the Poisson-Voronoi one.
The eight most common Weinberg vectors account for
more than 13.5% of all grains in the grain growth micro-
structure, but account for less than 1.35% in the Poisson-
Voronoi case. Because this difference is more pronounced
than for the p vectors, it is clear that Weinberg vectors
encode more precisely the types of grains favored by grain
growth than is possible using just the number of edges
around the faces of a given grain (p-vector information).
Indeed, a Weinberg vector specifies both the populations of
these polygonal faces and their relative arrangement.
Because normal grain growth results from mean curvature
flow, it drives the microstructure towards grains with
smaller surface-to-volume ratios than in the Poisson-
Voronoi microstructure. Consider a soccer ball with 12
pentagonal and 20 hexagonal faces. If the pentagonal faces
were all mutually adjacent, the soccer ball would more
likely be elongated and possess a larger surface-to-volume
ratio. However, grain growth drives the evolution of topol-
ogy towards arrangements of faces in which pentagonal
faces are separated, thus allowing for smaller surface-to-
volume ratios. While p vectors do not capture this ten-
dency, Weinberg vectors do.

To further highlight the role that Weinberg vectors play
in refining p-vector data, consider the most common p
vector (001343100...) in the Poisson-Voronoi microstruc-
ture, which accounts for almost 0.4% the grains. The
results in Fig. 5 and in Tables SII and SIII show that
none of the frequently occurring Weinberg vectors share
this p vector. How is this possible? This p vector can occur
in the Poisson-Voronoi microstructure in 38 topologically
distinct forms! While some of these Weinberg vectors
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Poisson—Voronoi

DI, /=0.28%

(00133200...)

P2, /=0.17%

(00133100...)

P3, f=0.15%

(00044200...)

P4, f=0.13%

(00134110...)

D5, /=0.13%

(00044100...)

D6, /=0.10%

(00052200...)

D7, f=0.10%

(00142210...)

P8, /=0.10%

(00125200...)

F=9, S=1 F=8, S=2 F=10, S=2 F=10, S=1 F=9, S=4 F=9, S=4 F=10, S=1 F=10, S=2
Grain growth
G1, f=2.83% | G2, f=1.86% | G3, f=1.63% | G4, f=1.53% | G5, f=1.48% | G6, f=1.43% | G7, f=1.39% | G8, f=1.38%
(0004400...) (0003600...) (0004410...) (0004420...) (0005200...) (0003610...) (0013300...) (0013320...)
F=8, S=8 F=9, S=12 F=9, S=4 F=10, S=2 F=7,58=20 | F=10, S=6 F=7, S=6 F=9, S=1

FIG. 5. Schlegel diagrams of the eight most common grain topologies (Weinberg vectors) in the Poisson-Voronoi and grain
growth microstructures. Listed for each topological type is a label, the frequency of occurrence f, the p vector, the number of faces F,
and the order S of the associated symmetry group. The Weinberg vectors are tabulated in Tables SII and SIII of the Supplemental

Material [18].

appear over 100 times in the Poisson-Voronoi microstruc-
ture, others appear only once, if at all; such an acute
disparity between the most and least frequent topological
realization of this p vector can also be found in grain
growth microstructures. This further illustrates that the p
vector alone cannot predict the frequency of a given topo-
logical type.

Figure 5 and Tables SII and SIII also indicate the orders
of the symmetry groups of the most frequent grain top-
ologies. A cursory examination reveals that the most fre-
quent grain topologies in grain growth microstructures are
substantially more symmetric than the corresponding ones
for Poisson-Voronoi microstructures. This observation is
made more quantitative in Fig. 6. Consider the probability
of a randomly selected grain having a particular symmetry
order. The ratio of these probabilities for the grain growth
and Poisson-Voronoi microstructures is plotted as a func-
tion of the order of the symmetry group in Fig. 6 and
summarized in Table SIV of the Supplemental Material
[18]. These results show that complete grain topology and
the frequencies of the order of symmetries provide an
outstanding tool for distinguishing between different cel-
lular microstructures; in the present case, the differences
between the relative frequencies of highly symmetric
grains in the grain growth and Poisson-Voronoi micro-
structures can be as large as a factor of 100. That is, highly
symmetric grains are substantially more common in the
grain growth microstructure. Equally interesting is that the
ratio between the probability that a grain has a particular
symmetry order S in the grain growth and Poisson-Voronoi
microstructures increases rapidly with §; the rough line
that passes through the data points in Fig. 6 indicates that
this ratio f2,5/foy = S (we exclude data from the fit for
which the statistical error exceeds 25%—i.e., S = 3, 32,
48, and 120).

As with the relatively stronger selection for certain p
vectors and Weinberg vectors in the grain growth micro-
structures than in the Poisson-Voronoi microstructures, the
difference in the symmetry of the grains may have its
origin in the energy-minimizing process of mean curvature
flow which is associated with grain growth. While a spheri-
cal grain shape minimizes its surface area-to-volume ratio
and is favored by mean curvature flow [19], grains in a
cellular network must fill space, and so their faces must be
polygonal. Nevertheless, just as curvature flow drives to-
wards geometrically symmetric spheres, we suggest that it
also drives towards topologically symmetric polyhedra, as
seen in the grain growth microstructures.
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FIG. 6. A log-log plot of the ratio of the frequencies of grains
with a given symmetry group order S ( = 120) from the grain
growth microstructures fZ; and Poisson-Voronoi microstruc-
tures f3y. Note that the statistical errors for § = 3, 32, 48, and
120 all exceed 30% because of their extreme rarity in the
microstructures.
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We have introduced an efficient method to completely
classify grain topologies and have applied this method,
along with p vectors, to investigate some differences be-
tween Poisson-Voronoi and grain growth microstructures.
The grain growth microstructure has been observed to
strongly favor certain highly symmetric grain topologies
relative to the Poisson-Voronoi microstructure. The avail-
ability of a complete topological characterization of indi-
vidual cells in such cellular microstructures has proven to
be an ideal tool for distinguishing between fundamental
characteristics of different microstructures. The distribu-
tion of the orders of symmetry of grain topologies, in
particular, provides a strong and convenient differentiator
of different cellular structures.
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