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We derive general analytical expressions relating the equilibrium fluctuations of a grain boundary to

key parameters governing its motion coupled to shear deformation. We validate these expressions by

molecular dynamics simulations for symmetrical tilt boundaries and demonstrate how they can be used to

extract the misorientation dependence of the grain-boundary mobility. The results shed light on

fundamental relationships between equilibrium and nonequilibrium grain-boundary properties and

provide new means to predict those properties.

DOI: 10.1103/PhysRevLett.109.095501 PACS numbers: 61.72.Mm, 05.40.Ca, 61.72.Hh, 62.20.Hg

Grain boundaries (GBs) strongly influence properties of
a wide range of polycrystalline materials [1,2]. In models
of mechanical behavior, GBs are often treated as ‘‘static’’
geometrical obstacles to dislocation motion. This role
underlies for example the classic Hall-Petch relationship
predicting increased strength with decreasing grain size.
However, GBs can also move in response to applied
stresses. There is a growing recognition that such a motion
can both influence mechanical behavior of materials and
drive grain coarsening by an entirely different process than
reduction in GB free energy [3–6].

The key property responsible for the GB interaction with
stress is the existence of coupling between normal GB
motion and shear deformation parallel to the GB plane
[3,4,7,8]. This coupling is characterized by a linear relation,

� ¼ vk=vn; (1)

between the normal GB velocity vn and the velocity vk of
parallel grain translation. In the case of pure coupling, the
coupling factor� depends only on GB bicrystallography. At
high temperatures approaching the melting point, many
GBs lose their coupling ability and the twovelocities become
uncorrelated. Due to the coupling effect, a shear stress �
applied parallel to the GB induces its normal motion. At
relatively high temperatures vn can be assumed to be pro-
portional to the driving force F for this motion, or vn ¼
MnF, whereMn is theGBmobility. Equating the rate ofwork
done by the shear stress per unit GB area, �vk, to the rate of
free energy dissipation by normal motion, vnF ¼ v2

n=Mn,
and using the coupling relation (1), yields

vn ¼ Mn��: (2)

Both atomistic simulations [3,4,7–9] and experiments
[10–12] support the basic theoretical model of coupling.
However, a comprehensive understanding of this effect,
and the ability to predict pure coupled motion, pure sliding,
or a mix of both behaviors, are still lacking. Even for
pure coupling, predicting the coupling factor and mobility

remains a challenge. While for symmetrical tilt GBs the
misorientation dependenceof� canbeanalytically predicted
by geometric analysis [4], more recent work [13] shows that
geometry alone is insufficient for predicting the coupling
relation for more general, asymmetrical GBs. Furthermore,
molecular dynamics (MD) simulations are generally limited
to very large strain rates, making it difficult to reliably
extrapolate computational predictions of Mn and � to
experimental conditions.
One route to address these issues is to exploit the analysis

of GB shape fluctuations to extract equilibrium and non-
equilibrium GB properties from statistical averages and
fluctuation-dissipation relations. While this approach is
well-developed for other types of interfaces such as surfaces
[14] and rough crystal-melt interfaces [15–17], its applica-
tion to GBs is less developed. Previous MD studies [18,19]
reported that some GBs, but not others, exhibited fluctua-
tions of the interface height hðxÞ ¼ P

kAðkÞeikx that were
well described by the standard relation derived from equi-
partition of energy among the independent Fourier modes,

hjAðkÞj2i ¼ kBT

Sð�þ �00Þk2 ; (3)

where the interface stiffness (�þ �00) is the sum of the
interfacial free energy � and its second derivative with
respect to orientation of the interface normal, and S¼LzLx

is the GB area assumed to have a ribbon-shape of length Lx

much larger than its width Lz. Experimental studies of GB
fluctuations in two-dimensional colloidal crystals reported
results consistent with Eq. (3) [20]. However, previous ana-
lytical studies predicted that hjAðkÞj2i � 1=k in the limit of
vanishing misorientation when dislocations are well sepa-
rated [21,22], which makes the extent of validity of Eq. (3)
unclear. In addition, the use of fluctuation analysis to extract
GB mobilities remains largely unexplored for coupled GB
motion.
In this Letter we extend the analysis of GB fluctuations

to the pure coupling regime and derive relations allowing
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one to extract the coupling factor and GBmobility. We also
generalize the GB random walk approach [23] to extract
the sliding mobility Mk in the pure sliding regime where

vk ¼ Mk�. We present the results of MD simulations of

high-temperature symmetrical tilt GBs that validate our
analytical results. The MD results also shed new light on
the transition from coupling to sliding and the misorienta-
tion dependence of mobility.

We first derive the equilibrium fluctuation spectrum
analogous to Eq. (3) but for a perfectly coupled GB. We
consider a wavy perturbation of a ribbon-shaped GB in the
form hðxÞ ¼ aðkÞ cosðkxÞ, where the x (y) axis is chosen
parallel (normal) to the unperturbed GB plane lying at
y ¼ 0 and z is along the tilt axis as depicted in Fig. 1.
The coupling relation (1) implies that the wavy perturba-
tion must cause the crystal lattices of each grain to translate
in opposite directions with respect to each other at the
peaks and troughs of the perturbed GB (green arrows in
Fig. 1), generating elastic strains inside the grains. The
problem of computing the GB fluctuation spectrum thus
reduces to computing the elastic energy EðkÞ of the strain
field created by the wavy perturbation. We outline here the
calculation of EðkÞ for an elastically isotropic material and
then state the result for cubic crystals. Details of both calcu-
lations are given in the online supplemental material [24].
The elastic energy density has the form

E ¼ �u2ii=2þ�uijuij; (4)

where � and � are the two Lamé coefficients and uij ¼
ð@iuj þ @juiÞ=2 is the small-strain tensor. The usual sum-

mation convention is implied. We denote by ~uþðx; yÞ and
~u�ðx; yÞ the displacement fields in the regions above (y > 0)
and below (y < 0) the unperturbed GB, respectively. These
fields obey the elastostatic equation

r2 ~u� þ 1

1� 2�
~rð ~r � ~u�Þ ¼ 0; (5)

where � is Poisson’s ratio and ð�þ �Þ=� ¼ 1=ð1� 2�Þ.
When broken down into x and y components, Eq. (5) yields

two coupled scalar equations for u�x and u�y that must be

solved in the regions y > 0 (þ ) and y < 0 (� ) subject to
several boundary conditions. These include the coupling
relation (1), which translates to (cf., Fig. 1)

uþx ðx; 0Þ � u�x ðx; 0Þ ¼ �hðxÞ ¼ �aðkÞ cosðkxÞ; (6)

the continuity of the normal displacement field uþy ðx; 0Þ ¼
u�y ðx; 0Þ, continuity of the normal�þ

yyðx; 0Þ ¼ ��
yyðx; 0Þ and

tangential �þ
xyðx; 0Þ ¼ ��

xyðx; 0Þ components of the traction

vector at the GB, and vanishing displacement far from the
GB in each grain u�x ðx;�1Þ ¼ u�y ðx;�1Þ ¼ 0. In writing

down the continuity relations, we use the fact that it is
equivalent to evaluate them at the perturbed GB position
y ¼ hðxÞ and at y ¼ 0 to linear order. Solutions of Eq. (5)
that satisfy all of the above boundary conditions are found
to be [24]

u�x ¼ �aðkÞ
2

�
1� ky

2ð1� �Þ
�
e�ky cosðkxÞ; (7)

u�y ¼ �aðkÞ
4ð1� �Þ ð1� 2�� kyÞe�ky sinðkxÞ: (8)

Substituting these solutions into Eq. (4) and integrating over
the GB area yields the total elastic energy of the perturbation
EðkÞ ¼ SC�2kaðkÞ2=4, where C ¼ �=½2ð1� �Þ� is an
effective elastic constant. Equipartition of energy implies
that EðkÞ ¼ kBT=2, which together with the relation be-
tween complex and real amplitudes hjAðkÞj2i ¼ hjaðkÞj2i=2
yields the final result [24]

hjAðkÞj2i ¼ kBT

SC�2k
: (9)

An analogous calculation for a [001] tilt GB between cubic
crystals gives the same spectrum as Eq. (9) with [24]

C ¼ �c11 þ �c12
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c44ð �c11 � �c12Þ

�c11ð �c11 þ �c12 þ 2 �c44Þ

s
; (10)

where �c11, �c12, and �c44 are the elastic constants in Voigt
notation with the coordinate axes parallel to the crystal
axes, and where C turns out to be independent of the misor-
ientation �. For isotropic elasticity (C ¼ �=½2ð1� �Þ�) and
small misorientation (� � 1 and j�ð�Þj � �), Eq. (9) re-
duces to the results of previous analyses where EðkÞ was
computed as the interaction energy of well separated dislo-
cations [21,22]. However, it should be emphasized that
Eq. (9) holds for arbitrary � without any restriction on
misorientation under the sole assumptions that the GB
exhibits pure coupledmotionviaEq. (1) and that the interface
stiffness is sufficiently large to suppress fluctuations linked
to anisotropic interface energy.
Next, to compute the GBmobility we extend the previous

analyses of time-dependent interface fluctuations [16,18] and
interface random walk [23] that make use of the fluctuation-
dissipation theorem. Extensions of those analyses to the pure
coupling case can be found inRef. [24]. The results show that
themobility can be extracted from computing the decay time

FIG. 1 (color online). Upper: typical snapshot of MD simula-
tion where light and dark atoms (blue and green) in each grain are
colored by the orientation parameter [24] used to calculate the GB
normal displacement hðxÞ (red line). Lower: schematic plot of the
flat reference GB (black line) and a sinusoidal GB perturbation
(red line) with green arrows showing material displacements.
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�ðkÞ of the autocorrelation function hAðk;tÞA	ðk;t0Þi¼
hjAðkÞj2ie�jt�t0j=�ðkÞ, together with

Mn ¼ ShjAðkÞj2i
�ðkÞkBT : (11)

The GB mobility can also be obtained by measuring the
Brownian-like randomwalk of the averageGB displacement
�hðtÞ ¼ ð1=LxÞ

RLx

0 hðx; tÞdx, with
h �h2ðtÞi ¼ ð2MnkBT=SÞt: (12)

To validate the above analytical predictions, we carried
out MD simulations of [001] symmetrical tilt GBs in
Cu with atomic interactions modeled with the same
embedded-atom potential [25] as in previous studies of
coupled GB motion [4,8,9]. The simulation geometry con-
sisted of a bicrystal with the tilt axis aligned with the z axis
and the GB plane perpendicular to the y axis as in Fig. 1.
Periodic boundary conditions were enforced in the x and z
directions and free surfaces in the y direction, allowing the
grains to freely translate parallel to the GB. The simulation

block dimensions were Lx � 1200 �A, Ly � 1140 �A, and

Lz � 14:8 �A with approximately 1:6
 106 atoms. Prior
to MD simulations, the ground-state GB structure was
obtained using the methods described in Ref. [4]. The
MD runs were about 5-ns long and implemented the
canonical (NVT) ensemble at the temperature of 1200 K
controlled by a Nose-Hoover thermostat.

To explore GB fluctuations in both the coupling and
sliding regimes, we studied a wide enough range of tilt
angles, 5:72� � � � 36:87�, to encompass both regimes
according to the previous work [4]. We define � as misor-
ientation between 110 directions in the grains rather than
[100] as in Ref. [4]. For the lowest angle studied here, the
GB is composed of cleanly separated 1=2h110i dislocations,
whereas at the largest angle it represents the �5ð210Þ GB.
The chosen misorientation range lies within the h110i
branch of coupling where the geometrically predicted
‘‘ideal’’ coupling factor is �ð�Þ ¼ �2 tanð�=2Þ.

Figure 2 demonstrates that the fluctuation spectrum obeys
the 1=k behavior predicted by Eq. (9) remarkablywell for the
range of� corresponding topure coupling. In contrast, for the
� ¼ 36:87� misorientation which is expected to exhibit pure
sliding at this temperature [4], the spectrum follows the 1=k2

scaling law and a fit to Eq. (3) yields the physically reason-
ableGB stiffness ð�þ �00Þ ¼ 0:506 J=m2. The latter finding
is consistentwith the fact that, in the absence of coupling,GB
fluctuations are governed by the energetic cost of creating
additional GB areawith orientations close to the unperturbed
GB plane. Fluctuation spectra for � in between the pure
coupling and pure sliding regimes exhibit more complex
variations with k without unique scaling [24].

The crossover from coupling to sliding is further exam-
ined in Fig. 3 where the MD results for SkhjAðkÞj2i are
compared to kBT=ðC�2Þ predicted by Eq. (9) with C
computed from Eq. (10) using values of the elastic

constants at 1200 K [24]. A good quantitative agreement
is found for pure coupling. The MD values depart from the
theoretical prediction at � * 25� when the sliding compo-
nent becomes significant. Figure 3 also shows the coupling
factors evaluated by two different methods: (i) from vk=vn

in stress-driven simulations as in Refs. [4,7], and (ii) from
linear regression between the normal GB displacement �hðtÞ
and the relative tangential translation of grains XðtÞ during
a random walk simulation. As physically expected, in the
coupling regime both calculations give results very close
to the ideal �. When sliding becomes significant, vk=vn
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FIG. 2 (color online). Power spectrum of GB fluctuations as a
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extracted from stress-driven simulations overshoots the
ideal � because part of the grain translation velocity is
now due to sliding. Figure 4 demonstrates that �hðtÞ andXðtÞ
are strongly correlated in the coupling regime, with the
regression coefficient close to �, but the correlation weak-
ens at � * 25� when coupling gradually transforms to
sliding. When coupling disappears (� ¼ 36:87�), the GB
performs two uncorrelated random walks in �hðtÞ and XðtÞ.

Figure 5 summarizes the GB mobilities computed by
three different methods: (i) from the GB shape fluctuations
using Eq. (11), (ii) from the GB random walk using
Eq. (12), and (iii) from stress-driven GB motion using
Eq. (2). The first two equilibrium methods give consistent
results as expected. The stress-drivenMn, which is the least
accurate, tends to overestimate the mobility because very
large velocities (5 m=s) were applied to create shear
stresses distinguishable from thermal noise. This deviation
highlights the importance of measuring GB mobility near
equilibrium and avoid unrealistically large driving pres-
sures as discussed in Refs. [2,26]. Figure 5 also shows that
the mobility increases with decreasing misorientation, as
was theoretically expected [3] and seen in previous MD
studies [27]. Furthermore, our results confirm the relation
2Mn sinð�=2Þ=cos2ð�=2Þ ¼ const expected assuming the
conservation of dislocation content of GBs [24]. In the
pure sliding regime we can also compute the sliding mo-
bility either from Mk ¼ vk=� or using the random walk

method giving the formula hXðtÞ2i ¼ ð2MkkBT=SÞt [24].
For the � ¼ 36:87� GB these two calculations give Mk ¼
9:1
 10�8 m4=ðJ sÞ and Mk ¼ 6:4
 10�8 m4=ðJ sÞ, re-

spectively, again highlighting the importance of near-
equilibrium measurements of mobility.

While the present work elucidates the fundamental link
between GB fluctuations and linear response to shear for
the pure coupling and pure sliding regimes, the transition
between those regimes warrants further study.
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