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We define a new diffusive matrix model converging toward the �-Dyson Brownian motion for all

� 2 ½0; 2� that provides an explicit construction of beta ensembles of random matrices that is invariant

under the orthogonal or unitary group. For small values of �, our process allows one to interpolate

smoothly between the Gaussian distribution and the Wigner semicircle. The interpolating limit distribu-

tions form a one parameter family that can be explicitly computed. This also allows us to compute the

finite-size corrections to the semicircle.
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Since Wigner’s initial intuition that the statistical prop-
erties of the eigenvalues of random matrices should pro-
vide a good description of the excited states of complex
nuclei, random matrix theory has become one of the
prominent fields of research, at the boundary between
atomic physics, solid state physics, statistical mechanics,
statistics, probability theory, and number theory [1–3]. It is
well known that the joint distribution of the eigenvalues
of a large Gaussian random matrix can be expressed as
the Boltzmann-Gibbs equilibrium weight of a one-
dimensional repulsive Coulomb gas confined in an har-
monic well. However, the effective ‘‘inverse temperature’’
� of the system cannot take arbitrary values but is quan-
tized (in units of the repulsive Coulomb potential).
Depending on the symmetry of the random matrix, only
three values are allowed � ¼ 1 for symmetric real matri-
ces, � ¼ 2 for Hermitian matrices, and � ¼ 4 for the
symplectic ensemble. This is known as Dyson’s ‘‘threefold
way’’. The existence of matrix ensembles that would lead
to other, possibly continuous, values of �, is a very natural
question, and the quest for such ensembles probably goes
back to Dyson himself. Ten years ago, Dumitriu and
Edelman [4] have proposed an explicit construction of
tridiagonal matrices with nonidentically distributed ele-
ments whose joint law of the eigenvalues is the one of
beta ensembles for general �. Another construction is
proposed in [1] (see also [5]) and uses a bordering proce-
dure to construct recursively a sequence of matrices with
eigenvalues distributed as beta ensembles. This construc-
tion gives not just the eigenvalue probability density of
one matrix of the sequence but also the joint eigenvalue
probability density of all matrices. This has lead to a
renewed interest for those ensembles that have connections
with many problems, both in physics and in mathematics;
see, e.g., [3,6]. The aim of the Letter is to provide another
construction of beta ensembles that is, at least to our eyes,
natural and transparent and respects by construction the
orthogonal or unitary symmetry [7]. Another motivation

for our work comes from the recent development of free
probability theory. ‘‘Freeness’’ for random matrices is the
natural extension of independence for classical random
variables. Very intuitively, two real symmetric matrices
A;B are mutually free in the large N limit if the eigenbasis
of B can be thought of as a random rotation of the eigen-
basis of A (see, e.g., [8] for an accessible introduction to
freeness and for more rigorous statements). ‘‘Free convo-
lution’’ then allows one to compute the eigenvalue distri-
bution of the sum AþB from the eigenvalue distribution
of A and B, much in the same way as convolution allows
one to compute the distribution of the sum of two inde-
pendent random variables. In this context, the Wigner
semicircle distribution appears as the limiting distribution
for the sum of a large number of free random matrices,
exactly as the Gaussian is the limiting distribution for the
sum of a large number of IID (independent and identically
distributed) random variables. A natural question, from this
perspective, is whether one can build a natural framework
that interpolates between these two limits.
Let us first recall Dyson’s Brownian motion construction

of the Gaussian orthogonal ensemble (GOE) [9] (for the
sake of simplicity, we will only consider here extensions of
the � ¼ 1 ensemble, but similar considerations hold for
� ¼ 2 Hermitian matrices, see [10] for full details). It is
defined as the real N � N symmetric matrix process MðtÞ
solution of the stochastic differential equation (SDE)

dMðtÞ ¼ �1
2MðtÞdtþ dHðtÞ; (1)

where dHðtÞ is a symmetric Brownian increment [i.e., a
symmetric matrix whose entries above the diagonal
are independent Brownian increments with variance
hdH2

ijðtÞi ¼ 1
2 ð1þ �ijÞdt]. Standard second order pertur-

bation theory allows one to write the evolution equation
for the eigenvalues �i of the matrix MðtÞ,

d�i ¼ � 1

2
�idtþ 1

2

X
j�i

dt

�i � �j

þ dbi; (2)
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where biðtÞ are independent standard Brownian motions.
This defines Dyson’s Coulomb gas model, i.e., ‘‘charged’’
particles on a line, with positions �i, interacting via a
logarithmic potential, subject to some thermal noise and
confined by a harmonic potential. One can deduce from the
above equation the Fokker-Planck equation for the joint
density Pðf�ig; tÞ, for which the stationary joint probability
density function (PDF) is readily found to be

P�ðf�igÞ ¼ Z
Y
i<j

j�i � �jj� exp
�
� 1

2

X
i

�2
i

�
; (3)

with � � 1 and where Z is a normalization factor. The
above expression is the well-known joint distribution of
the eigenvalues of an N � N random GOE matrix. The
Wigner distribution can be recovered either by a careful
analysis of the mean marginal univariate distribution
�ð�Þ ¼ R � � �R d�2 � � �d�NP

�ð� ¼ �1; �2; . . . ; �NÞ in the

largeN limit [11] or by using the above SDE (2) to derive a
dynamical equation for the Stieltjes transform Gðz; tÞ
of �ð�; tÞ,

Gðz; tÞ ¼ 1

N

XN
i¼1

1

�iðtÞ � z
; z 2 C: (4)

With this scaling, the spectrum is spread out in a region of

width of order
ffiffiffiffi
N

p
, and therefore, z� ffiffiffiffi

N
p

andG� 1=
ffiffiffiffi
N

p
.

Applying Itô’s formula to Gðz; tÞ and using Eq. (2), we
obtain the following Burgers equation for G [12]:

2
@hGi
@t

¼�N

2

@hGi2
@z

þ@zhGi
@z

þð2��Þ1
2

@2hGi
@z2

; (5)

where� is introduced for later convenience, with� ¼ 1 for
now. Note that we have neglected in Eq. (5) a term of order

N�5=2. Indeed, in agreement with [2], hG2i � hGi2 � N�3.
The neglected term is thus 1=N smaller than the diffusion
term in Eq. (5).

For largeN, the last (diffusion) term of Eq. (5) is of order
1=N smaller than the other ones. To leading order, the
stationary solution (where the time derivative is set to 0)
can be integrated with respect to z,

1
2�NG21ðzÞ þ zG1ðzÞ ¼ �1; (6)

where the integration constant comes from the boundary
condition GðzÞ � �1=z when z ! 1. It is then easy to
solve this equation to find the Stieltjes transform that in-
deed corresponds to the Wigner semicircle density:

G1ðzÞ ¼ 1

�N

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 2�N

p
� z

�

! �ð�Þ ¼ 1

��N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�N � �2

p
1fj�j� ffiffiffiffiffiffiffi

2�N
p g: (7)

Now let us turn to the central idea of the present Letter.
In Dyson’s construction, the extra Gaussian slice dMðtÞ
that is added to HðtÞ is chosen to be independent of MðtÞ
itself. The eigenbasis of dHðtÞ is a random rotation, taken

uniformly over the orthogonal group. As mentioned above,
this corresponds to free addition of matrices, and Eq. (5)
can indeed be derived (for N ¼ 1) using free convolution
[8]. If instead we choose to add a random matrix dYðtÞ that
is always diagonal in the same basis as that of MðtÞ, the
process becomes trivial. The diagonal elements ofMðtÞ are
all sums of IID random variables, and the eigenvalue
distribution converges toward the Gaussian. The construc-
tion we propose is to alternate randomly the addition of a
‘‘free’’ slice and of a ‘‘commuting’’ slice. More precisely,
our model is defined as follows: we divide time into
small intervals of length 1=n and for each interval
[k=n; ðkþ 1Þ=n], we choose independently Bernoulli
random variables �nk; k 2 N such that P½�nk ¼ 1� ¼ p ¼
1� P½�nk ¼ 0�. Then, setting �nt ¼ �n½nt�, our diffusive ma-

trix process simply evolves as

dMnðtÞ¼�1
2MnðtÞdtþ�nt dHðtÞþð1��nt ÞdYðtÞ; (8)

where dHðtÞ is a symmetric Brownian increment as above
and where dYðtÞ is a symmetric matrix that is codiagona-
lizable with MnðtÞ (i.e., the two matrices have the same
eigenvectors) but with a spectrum given by N independent
Brownian increments of variance dt. It is clear that the
eigenvalues of the matrix MnðtÞ will cross at some points
but only in intervals [k=n; ðkþ 1Þ=n] for which �nk ¼ 0 (in
the other intervals where they follow Dyson Brownian
motion with parameter � ¼ 1, it is well known that the
repulsion is too strong and that collisions are avoided).
In such a case, the eigenvalues are renumbered at time
t ¼ ðkþ 1Þ=n in increasing order.
Now, using again standard perturbation theory, it is easy

to derive the evolution of the eigenvalues ofMnðtÞ denoted
as �n

1ðtÞ � . . . � �n
NðtÞ,

d�n
i ¼ � 1

2
�n
i dtþ

�nt
2

X
j�i

dt

�n
i � �n

j

þ dbi; (9)

where the bi are independent Brownian motions also in-
dependent of the �nk , k 2 N.

A mathematically rigorous derivation provided in [10]
allows one to show that the scaling limits �iðtÞ, when
n ! 1, of the eigenvalues �n

i ðtÞ obey the following modi-
fied Dyson SDE:

d�i ¼ � 1

2
�idtþ p

2

X
j�i

dt

�i � �j

þ dbi; (10)

with the additional ordering constraint �1ðtÞ � . . . � �NðtÞ
for all t. One of the difficulties of the proof comes from the
fact that when p < 1, there is a positive probability for
eigenvalues to collide in finite time (the ordering constraint
is therefore useful at those points to restart). The idea is
then to show that collisions are in a sense sufficiently rare
for the above SDE to make sense (see [10,13] for further
details). Using the SDE (10), one can derive as above
the stationary distribution for the joint distribution of
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eigenvalues, which is still given by Eq. (3) but with now
� ¼ � ¼ p � 1. A very similar construction can be
achieved in the Gaussian unitary ensembles case, leading
to � ¼ 2p. As announced, our dynamical procedure, that
alternates standard and free addition of random matrices,
can lead to any beta ensemble with � � 2. The corre-
sponding matrices MðtÞ are furthermore invariant under
the orthogonal (or unitary) group. This is intuitively clear,
since both alternatives (adding a free slice or adding a
commuting slice) respect this invariance and lead to a
Haar probability measure for the eigenvectors (i.e., uni-
form over the orthogonal or unitary group). We have also
proved that a collision leads to a complete randomization
of the eigenvectors within the two-dimensional subspace
corresponding to the colliding eigenvalues; see again [10].

It is well known that the eigenvalue density correspond-
ing to the measure P� given by Eq. (3) is the Wigner
semicircle for any �> 0. In fact, using Eq. (5) with now
� ¼ � ¼ p, one immediately finds that the eigenvalue
density is a semicircle with edges at 	 ffiffiffiffiffiffiffiffiffiffi

2�N
p

. We simu-
lated numerically the matrix MnðtÞ with N ¼ 200 for a
very small step 1=n and until a large value of t so as to
reach the stationary distribution for the eigenvalues. Then
we started recording the spectrum and the nearest neighbor
spacings (NNS) every 100 steps so as to sample the en-
semble. We verified that the spectral density ofMnðt ¼ 1Þ
is indeed in very good agreement with the Wigner semi-
circle distribution for � ¼ 1=2. Our sample histogram for
the NNS distribution (NNSD) is displayed in Fig. 1. We
also added the corresponding Wigner surmise (which is
expected to provide a good approximate description of the
NNSD).

From the point of view of a crossover between the
standard Gaussian central limit theorem for random vari-
ables and the Wigner central limit theorem for random
matrices, we see that as soon as the probability p for a
noncommuting slice is positive, the asymptotic density is
the Wigner semicircle, with a width of order

ffiffiffiffiffiffiffi
pN

p
.

A continuous crossover therefore takes place for p ¼
2c=N with c strictly positive and independent of N.
When c ¼ 0, �ð�Þ is a Gaussian of rms 1, which indeed
corresponds to the solution of Eq. (5) for � ¼ 0. The SDE
for the system [�iðtÞ] becomes

d�i ¼ � 1

2
�idtþ c

N

X
j�i

dt

�i � �j

þ dbi; (11)

with the additional ordering constraint �1ðtÞ � � � � �
�NðtÞ and the stationary joint PDF is still given by
Eq. (3) but with now a vanishing repulsion coefficient
� ¼ 2c=N. In order to elicit the crossover, we study
Eq. (5) with � ¼ 2c=N. The stationary differential equa-
tion corresponding to Eq. (5) (note this time that all terms
are of the same order and the second derivative term is not
negligible) can be integrated with respect to z again as

cG2 þ zGþ dG

dz
¼ �1; (12)

where the integration constant comes from the boundary
condition G��1=z for z ! 1. Note that Eq. (12) can be
recovered directly from the saddle point equation route:
under the measure P� with � ¼ 2c=N, the energy of a
configuration of the �i’s can be expressed in term of the
continuous state density �, neglecting terms 
 1, as

E½�� ¼ 1

2

Z
�2�ð�Þd�

� c
ZZ

lnðj�� �0jÞ�ð�Þ�ð�0Þd�d�0:

The probability density P� therefore is rewritten in terms
of � as

P�½�� ¼ Z exp

�
�N

�
E½�� þ

Z
� lnð�Þ

��
�

�Z
�� 1

�
;

where the entropy term, which is negligible when � ¼ p is
of order 1, is now of the same order as the energy term (see
[14] for a detailed discussion on the origin of the entropy

s

p(
s)
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FIG. 1 (color online). Empirical NNSD PðsÞ for the matrix
Mnðt ¼ 1Þ for � ¼ p ¼ 1=2 with the Wigner surmise (red
curve) corresponding to �¼ 1

2 , which behaves as s
� when s ! 0.
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FIG. 2 (color online). Density �cðuÞ for c ¼ 0; 1; 2; 3; 4 show-
ing the progressive deformation of the Gaussian toward Wigner’s
semicircle. The value c ¼ 0 corresponds to the highest curve at
the origin, c ¼ 1 to the second highest.
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term). We now need to minimize the quantity E½�� þR
� lnð�Þ with respect to �. It is easy to see that the unique

minimizer �c satisfiesZ ��cð�Þ
�� z

d�� 2c
ZZ �cð�Þ�cð�0Þ

ð�� zÞð�� �0Þd�d�
0

þ
Z �0

cð�Þ
�� z

d�þ � ¼ 0;

where � is an integration constant. It is now straightfor-
ward to derive Eq. (12) from this last equation by identify-
ing each term and choosing the constant � so as to have the
correct boundary condition for the Stieltjes transform of a
probability measure. As expected physically, the diffusion
term in Eq. (12) corresponds exactly to the entropy con-
tribution to the saddle point.

Equation (12) was studied in detail by Askey and
Wimp [15] and Kerov [16] (see also [17]). Set GðzÞ :¼
u0ðzÞ=cuðzÞ to obtain a second order equation on u:

u00ðzÞ þ zu0ðzÞ þ cuðzÞ ¼ 0: (13)

It follows from the asymptotic behavior of GðzÞ that, for
jzj ! 1,

uðzÞ � A1

zc
: (14)

Equation (13) can in turn be transformed with the change

of function uðzÞ :¼ e�z2=4yðzÞ into a Schrödinger equation
on yðzÞ:

y00ðzÞ þ ½c� 1
2 � 1

4z
2�yðzÞ ¼ 0: (15)

The solutions of Eq. (15) are known (see [18]) to write as
yðzÞ ¼ A2Dc�1ðzÞ þ A3D�cðizÞ, where Dc�1, D�c are
parabolic cylinder functions and where A2 and A3 are
two constants. The general solution for u therefore is

uðzÞ ¼ e�z2=4½A2Dc�1ðzÞ þ A3D�cðizÞ�, and the correct
asymptotic behavior of u is fulfilled for A2 ¼ 0. Now,
one can recover the spectral density �cð�Þ associated to
G by the classical inversion formula and various elegant
tricks [19]. The final result for �ð�Þ reads, for all c > 0,

�cð�Þ ¼ 1ffiffiffiffiffiffiffi
2�

p
�ð1þ cÞ

1

jD�cði�Þj2
;

D�cðzÞ ¼ e�z2=4

�ðcÞ
Z 1

0
dxe�zx�ðx2=2Þxc�1:

(16)

Expression (16) was again checked with numerical simu-
lations with very good agreement. The density �c is rep-
resented for several values of c in Fig. 2. The integral
representation for D�cðzÞ does not hold for c ¼ 0, but
the function D�cðiuÞ is still well defined for all c 2
ð�1; 0� (see [15]). It is easy to check that �0ðuÞ ¼
e�u2=2=

ffiffiffiffiffiffiffi
2�

p
when c ¼ 0, as expected. When c ! 1, the

Wigner semicircle law is recovered:

�cðuÞ � 1

2�c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c� u2

p
: (17)

Standard results [18] onD�c enable us to find the tails of�c:

�cðuÞ � u2ce�u2=2 ðjuj ! 1Þ: (18)

Let us return to Eq. (5) for � ¼ � 2 ð0; 2Þ.
Interestingly, our method allows us to compute the correc-
tion to the Wigner semicircle inside the support of the
spectral density for large but finite N due to the last
diffusion term, which is usually neglected. Indeed, one
can solve as above the stationary equation of Eq. (5) keep-
ing every term. This leads to the following corrected
spectral density, valid for large but finite N:

�ð�Þ ¼
ffiffiffiffi
�

p
ffiffiffiffiffiffiffi
2�

p
�ð1þ cÞ

1

jD�cði
ffiffiffiffi
�

p
�Þj2 ; (19)

where � ¼ 2=ð2� �Þ and c ¼ �N=ð2� �Þ. Note that
this correction is valid only inside the spectrum and does
not describe the edge scaling behavior nor the Tracy-
Widom tails.
The above discussion can also be formally extended to

�1 � c < 0, corresponding to a weakly attracting
Coulomb gas (also mentioned in [7]; see also [20] for an
application). We conjecture that the stationary density for
large system is again given by the above Askey-Wimp-
Kerov distributions �c but for the parameter range c 2
ð�1; 0�. For c ¼ �1, the stationary density ��1 is a Dirac
mass at 0. Beyond this level, the attraction is too strong,
and the gas completely collapses on itself.
As a conclusion, we have provided here the first explicit

construction of invariant beta ensembles of random matri-
ces, for arbitrary � � 2. The stationary distribution for the
eigenvectors is the Haar probability measure on the or-
thogonal group if 0<� � 1, respectively unitary group if
1<� � 2. We have found a natural scaling limit that
allows one to interpolate smoothly between the Gaussian
distribution, relevant for sums of independent random
variables, and the Wigner semicircle distribution, relevant
for sums of free random matrices. The interpolating limit
distributions form a one parameter family that can be
explicitly computed. The statistics of the largest eigenvalue
is also very interesting (and now well known for�> 0; see
[21–24]): one should be able to interpolate smoothly, as a
function of c, between the well-known Gumbel distribution
of extreme value statistics and the Tracy-Widom (�) dis-
tributions. Whether this can be mapped into a generalized
Kardar-Parisi-Zhang or directed polymer problem remains
to be seen.
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