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We experimentally demonstrate the formation and stable propagation of various types of discrete

temporal solitons in an optical fiber system. Pulses interacting with a time-periodic potential and

defocusing nonlinearity are shown to form gap solitons and nonlinear truncated Bloch waves. Multi-

pulse solitons with defects, as well as novel structures composed of a strong soliton riding on a weaker

truncated nonlinear Bloch wave are shown to propagate over up to eleven coupling lengths. The nonlinear

dynamics of all pulse structures is monitored over the full propagation distance which provides detailed

insight into the soliton dynamics.

DOI: 10.1103/PhysRevLett.109.093903 PACS numbers: 42.65.Sf, 42.81.Qb

The complex interplay between nonlinearity and period-
icity determines the dynamics of many physical systems
and leads to the formation of self-localized excitations.
These so-called discrete solitons [1,2] are the subject
of active research in many areas of physics such as
Bose-Einstein condensates [3–5] and nonlinear optics [6].
Nonlinear optical lattices especially provide a prolific envi-
ronment for exploring the peculiar effects of light propaga-
tion in periodic systems [7,8] but have also been envisaged
for networking and routing in all-optical circuits [9–11].

Transferring these well-established concepts from space
to equivalent systems in the time domain [12] gives access
to completely new physical phenomena related to the much
richer spectral properties of temporal systems. This may
open up fundamentally new possibilities for the engineer-
ing of optical communication networks [13,14]. Exploiting
the fast fiber nonlinearity paves the way for studying many
types of discrete phenomena. The sign of the group veloc-
ity dispersion allows us to select between either focusing or
defocusing nonlinearity [13].

Recent studies of spatial systems with defocusing non-
linearity confirmed experimentally the existence of stable
extended soliton clusters [15–18] which had already been
predicted earlier as flat-top solitons [19,20]. For a given set
of parameters these truncated nonlinear Bloch waves
(TBWs) can occupy an arbitrary number of lattice sites
[17] and can take very complex forms [21]; their temporal
analogs are archetypes of data patterns in optical
telecommunication.

In this Letter, we report on the first experimental obser-
vation of discrete temporal solitons. The formation and
stable propagation of fundamental gap solitons and trun-
cated nonlinear Bloch waves mediated by a defocusing
nonlinearity is demonstrated in a temporal lattice using a
recirculating fiber-loop setup. Almost arbitrary bit patterns
can be encoded and stabilized by inserting internal defects
into a TBW. The stable propagation of these new structures
is demonstrated over several coupling lengths. Finally,

we study the interaction of a single discrete soliton with
a TBWand show experimentally the robust propagation of
this new collective state as well as its breakup depending
on the power levels of its components. A high-resolution
all-optical oscilloscope enables us to measure the soliton
dynamics over the complete propagation distance.
We study pulse propagation in a recirculating fiber-loop

setup which is typically used to investigate optical long-
haul transmission lines in the laboratory. In our case, it
consists of several kilometers of single-mode optical fiber
with normal group velocity dispersion, an Erbium-doped
fiber amplifier to compensate for the loop losses, and a
harmonically driven phase modulator [see Fig. 1(b)].
The phase modulation provides a time-periodic potential

which is applied discretely once in each loop circulation [14],
thereby separating its action from fiber dispersion and non-
linearity, as is illustrated in Fig. 1(a). Here we deal only with
a phase modulation much smaller than 2� per round trip. As
for guiding-center solitons [22] and numerical split-step
algorithms [23], a quasicontinuous model can be applied.
The desired pattern consisting of 25 ps pulses at 10 GHz

repetition rate is injected via a 50% coupler into the fiber
loop. After each round trip half of the signal continues its
propagation inside the loop; the remainder is coupled out
for monitoring. The measurements are performed with a
linear optical sampling setup [24] which enables us to
record the nonlinear evolution of the signal power profile
with high temporal resolution over the complete propaga-
tion distance. Such a detailed experimental insight into
nonlinear pulse propagation in discrete systems is, at
present, unattainable in equivalent spatial arrangements
[5,6,25].
The propagation of picosecond pulses in our optical fiber

system is well described by a modified nonlinear
Schrödinger equation [13,23,26]

i@ZA� �2

2
@2TAþ �jAj2Aþ V0sin

2ð�T=T0ÞA ¼ 0; (1)
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where T ¼ tlab � Z=vg is time in the reference frame

comoving with the pulse envelope A at its group velocity
vg and Z is the propagation coordinate. V0 is the amplitude

of an effective time-periodic potential with period T0 which
depends on the phase modulation depth �0 and the length
of the loop L0 as V0 ¼ �0=L0. �2 is the group-velocity
dispersion (GVD), and � the Kerr nonlinearity of the fiber
(see Fig. 1 for the experimental parameters). Normalizing
Eq. (1) to characteristic scales gives us

i@zU� �@2t Uþ jUj2Uþ N0sin
2ðtÞU ¼ 0; (2)

where t ¼ �T=T0, z ¼ Z=Z0 with Z0 ¼ 2T2
0=ð�2j�2jÞ,

U ¼ ffiffiffiffiffiffiffiffiffi

Z0�
p

A, and the potential strength is scaled as
N0 ¼ Z0V0. The coupling between the sites of the temporal
lattice is facilitated by the GVD and can be positive
(� ¼ þ1) for normal or negative (� ¼ �1) for anomalous
dispersion, in contrast to analogous spatial systems where
diffraction restricts the coupling to positive values. For
normal GVD as studied here, Eq. (2) is equivalent to well-
investigated spatial systems with defocusing nonlinearity
[6,17].

Equation (2) supports stationary solitary wave solutions
of the form Uðz; tÞ ¼ uðtÞ expði�zÞ. Among them are clus-
ters known as flat-top solitons or TBWs [16,17,19,20]
which can be viewed as a composition of fundamental
gap solitons [27]. Figure 2(b) illustrates the bifurcation

behavior of the solitons with respect to the band structure
of Bloch waves. TBWs like the one shown in Fig. 2(d) do
not bifurcate from the first band like fundamental gap
solitons, but when the power is increased the defocusing
nonlinearity shifts them out of the first band before they
localize in the first band gap [16–18]. A TBW which
features an internal defect, as is displayed in Fig. 2(e),
belongs to a different soliton family as it has a distinct
topological structure. All these soliton compositions can be
excited experimentally as we will demonstrate in the fol-
lowing. Solitons residing in other band gaps [27] or for
anomalous dispersion do also exist [20] and are also ex-
pected to be accessible experimentally. All the created
localized structures are completely immobile and localize
on individual lattice sites. This is different from the gap
solitons observed in Bragg gratings, which cover hundreds
of unit cells and can even move across the lattice.
Typical experimental results for the linear and nonlinear

evolution of single pulses are illustrated in Fig. 3. Without
any phase modulation the pulses spread quickly, as can be
seen in Fig. 3(a), a process which is even accelerated by the
nonlinearity of the fiber [23]. As soon as the phase modu-
lation is switched on, the fields become localized at the
phase minima and the spreading slows down considerably.
This discrete temporal diffraction [14] is equivalent to its
spatial counterpart observed in waveguide arrays. Using
the maximum pulse spreading angle �max in the linear
case, Fig. 3(b), we estimated the coupling length [28] to
be Lcpl � T0�=�max � 500 km for a phase modulation
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FIG. 2. (a) Dependence of the linear transmission bands
(shaded) on the potential depth N0. (b) Bifurcation behavior of
the numerical soliton solutions [35] in (c)–(e) with respect to the
band structure of Bloch waves (�: normalized Bloch vector).
(c) Fundamental gap soliton, (d) a six-peak TBW, and (e) a six-
peak TBW with defect. The soliton solutions are shown for a
fixed potential strength N0 ¼ 6 at propagation constants �¼3:0
(solid line) and � ¼ 4:0 (dashed line), which are also marked in
the band structure (a) as A and B, respectively.

FIG. 1. (a) Illustration of the experimental separation of phase
modulation from fiber effects. (b) Block scheme of the experi-
mental setup. A transmitter (Tx) generates patterns of 25 ps
pulses with 10 GHz pulse repetition rate at 1550 nm. Acousto-
optic load and unload switches control the loop operation. In
each circulation a high-frequency periodic phase modulation
(PM) is imposed on the pulses which are subsequently amplified
with an Erbium-doped fiber amplifier (EDFA) before entering
a dispersion-compensating fiber [DCF, L ¼ 1:4 km, � ¼
7ðWkmÞ�1, �2 ¼ 120 ps2=km, the total dispersion of all other
components can be neglected; see text for definitions]. An
optical bandpass filter removes excess noise from the signal.
The fiber loop circulation time is synchronized with the 10 GHz
microwave signal applied to the phase modulator. The pulse
propagation is monitored with a high-resolution linear optical
sampling setup (LOS).
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depth of �0 ¼ 0:5 rad corresponding to a potential
strength of N0 ¼ 6 in the continuous model [Eq. (2)].
This value for the potential strength is used for all mea-
surements presented in this Letter. The input pulses for the
linear propagation shown in Fig. 3(b) have a peak power of
500 �W. All power values are given as peak powers and
are averaged over the fiber length of one loop round trip to
take into account the fiber losses.

When increasing the power the propagation constant� of
the field enters the first band gap and a fundamental gap
soliton forms. For 30 mW the soliton is already localized
deep inside the gap [see Fig. 3(c)]. Note that this soliton
peak power is orders of magnitude smaller than for any other
optical system supporting discrete solitons based on a fast
nonlinearity [6]. We would like to emphasize that the bright
solitons form in a regime with a strong normal GVD, which
even enhances the nonlinear pulse spreading in the absence
of a supporting periodic potential, as can be seen in Fig. 3(a).

We could demonstrate stable soliton propagation over a
distance of 3500 km (2500 loop round trips) corresponding
to seven coupling lengths, as is demonstrated in Fig. 3(c).
As each round trip incorporates an amplification process,
noise is added in the form of amplified spontaneous emis-
sion to the signal. Although this should also result in
Gordon-Haus timing jitter of the signal pulses [29,30],
measurements like those displayed in Fig. 3(c) do not
show noteworthy timing fluctuations. This can be ex-
plained from two distinct perspectives: from the viewpoint
of discrete dynamics, fundamental gap solitons are trans-
versely immobile [6,31] which manifests as timing
stabilization in our setup. From a more technical perspec-
tive, our experimental arrangement reminds us of synchro-
nous modulation as is used for retiming in all-optical
regenerators [32]. Still, the accumulation of amplified

spontaneous emission from optical amplifiers represents
a major limitation for the achievable propagation distance.
The optical transmitter allows us to generate and propa-

gate arbitrary bit patterns at 10 GHz pulse repetition rate
which is employed to study truncated nonlinear Bloch
waves. Figure 4 shows experimental results after launching
a sequence of six in-phase pulses into the fiber loop. Their
linear propagation inside the lattice results in spreading of
the initial distribution because of evanescent coupling. The
maximum spreading angle imposed by the periodic potential
is clearly visible in Fig. 4(b). The nonlinear evolution in the
presence of the temporal lattice gives rise to stable TBWs, as
can be seen in Fig. 4(c). The experimental parameters are
the same as for the fundamental gap soliton in Fig. 3.
Moving toward more complex soliton states, we study the

evolution of different multipulse patterns featuring internal
defects. When a single defect is introduced into the six-peak
pattern of Fig. 4, the resulting pulse sequence stays un-
changed upon nonlinear propagation in the temporal lattice
[Fig. 5(a)]. This defect TBW is not a combination of two
three-peak solutions but belongs to a distinct soliton family
(see, e.g., Ref. [1]). Figure 5(b) shows the realization of
another kind of defect TBW which features two single
defects separated by two lattice sites. These two patterns
are representatives of arbitrary bit patterns which can form
solitons in the system.
From the perspective of our temporal approach, the

existence of these distinct TBW families is equivalent to
the nonlinear stabilization of arbitrary bit patterns with on-
off keying, thus suggesting potential applications in optical
communication. Contrary to common soliton transmission
[30], the duty cycle of the pulses in a TBW is very high,
about 50%. This value is close to that used in modern
transmission systems with return-to-zero modulation
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FIG. 3 (color online). Linear and nonlinear evolution of a
single pulse. (a) Nonlinear pulse broadening without periodic
potential and 30 mW pulse peak power. (b) The discrete dif-
fraction of the pulse in the temporal lattice for low power
(500 �W) and (c) the discrete soliton with 30 mW pulse
peak power. In both cases the phase modulation depth is
0.5 rad (N0 ¼ 6).
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FIG. 4 (color online). Linear and nonlinear evolution of a six-
peak pulse sequence. (a) Nonlinear broadening without temporal
potential. The linear evolution with the lattice and the resulting
discrete diffraction pattern is shown in (b). The formation and
stable propagation of truncated nonlinear Bloch waves can be
seen in (c). All parameters are as indicated in Fig. 3.
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formats. The spectral efficiency of TBWs is very high
because their spectrum is as narrow as that of single solitons.

Potentially, our system is not limited to binary on-off
formats. Multipulse patterns featuring a single peak with a
power higher than the surrounding TBW can also be
launched. The nonlinear propagation and in particular the
robustness of such multilevel structures is expected to
depend critically on the power ratio.

Figure 6(a) displays the nonlinear evolution of such a
novel structure consisting initially of a strong central pulse
having r ¼ 2:5 times the 20 mW peak power of the sur-
rounding TBW. The strong peak distributes its energy
over the surrounding pulses and completely disappears
after only a few loop circulations. An isolated pulse of
the same power of 50 mW would immediately form a gap
soliton as can be deduced from Fig. 3(c). For these power
levels the propagation constants of the fundamental gap
soliton and the TBW are too close, such that phase match-
ing causes an efficient energy transfer between them during
propagation. It is worth noting that still all the power
remains confined to the initially excited seven lattice sites
which somehow form a kind of nonlinear background
completely decoupled from the rest of the lattice.

Increasing the power ratio leads to an efficient decou-
pling of the single pulse from the background TBW. A
typical measurement with r ¼ 4 (single pulse power of
60 mW, TBW power of 15 mW) is shown in Fig. 6(b)
which clearly demonstrates that the composition of a TBW
with a ‘‘piggyback’’ gap soliton maintains its initial shape
for at least 5600 km, which corresponds to eleven coupling
lengths. This is even more surprising because the coexis-
tence of these two solitary structures with different propa-
gation constants results in a nonstationary, but nevertheless
well-localized state. This is the first time, to our knowl-
edge, that the stable propagation of such a structure has
been observed.

In conclusion, we have demonstrated the formation
of temporal solitary structures in an effectively time-
discretized optical fiber system. The interplay of a fast
nonlinearity and a time-periodic potential was employed
to observe temporal gap solitons as well as truncated non-
linear Bloch waves with and without internal defects. The
pulse propagation at milliwatt peak powers with defocus-
ing nonlinearity was monitored with high temporal reso-
lution over up to eleven coupling lengths. Finally, we
reported on the joint propagation of a truncated nonlinear
Bloch wave with a ‘‘piggyback’’ gap soliton. It was dem-
onstrated that this novel structure is robust for an appro-
priate choice of optical power. The attained symbiosis of
discrete optics and fiber-based optical communications not
only sheds new light on long-known techniques like
synchronous modulation [32], active optical buffering
[33], and ultra-long-haul optical data transmission [34],
but also indicates new possibilities for all-optical signal
processing.
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FIG. 5 (color online). Nonlinear evolution of two pulse pat-
terns with one (a) or two (b) single internal defects for
P̂ ¼ 30 mW and N0 ¼ 6. The patterns form defect TBWs which
are stable for over 3500 km.
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