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The click statistics from on-off detector systems is quite different from the counting statistics of the

more traditional detectors. This necessitates the introduction of new parameters to characterize the

nonclassicality of fields from measurements using on-off detectors. To properly replace the Mandel QM

parameter, we introduce a parameter QB. A negative value represents a sub-binomial statistics. This is

possible only for quantum fields, even for super-Poisson light. It eliminates the problems encountered in

discerning nonclassicality using Mandel’s QM for on-off data.
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Introduction.—Nonclassicality of the radiation fields has
been at the heart of quantum optics. One uses detectors
which work by absorption of photons and hence normally
ordered correlations are the ones measured directly [1–3].
Nonclassicality in quantum optics has therefore been for-
mulated in terms of the nonclassical properties of the P
function associated with the density matrix of the quantum
fields [4,5]. However, the P function itself is not directly
measurable. Mandel introduced an experimentally deduci-
ble measure of nonclassicality, namely the QM parameter,
defined by

QM ¼ hð�nÞ2i
hni � 1; (1)

with hni and hð�nÞ2i being the classical mean value and the
classical variance of the photoelectric statistics [6]. If QM

is negative, then the photocounting statistics is of sub-
Poisson type and we conclude that the field is nonclassical.
The very first experimental demonstration of this nonclass-
ical effect was given in Ref. [7].

More recently, it has become necessary to use photon
number resolving (PNR) detectors to discriminate between
states with definite photon numbers [8–11]. Because such
detectors are not directly available, one uses on-off detec-
tor systems (avalanche photodiodes) [12]. Such detector
systems have been characterized by tomographic methods
[13]. The deduction of nonclassicality using measure-
ments with avalanche photodiodes and using the Mandel
QM parameter meets with difficulties. For example, even
if the field is completely classical, then QM can be
negative [14].

In this Letter, we present a solution to this difficulty by
introducing an appropriate measure of nonclassicality us-
ing the data from on-off detector systems. The condition
QB < 0 characterizes the sub-binomial click statistics of
light. We provide a physical justification for the new
measure and we show by several examples the validity of

the binomial QB parameter. Whenever the discrimination
of adjacent photon numbers is of relevance for applica-
tions in modern quantum technologies, the notion of sub-
binomial light is expected to play a vital role.
The binomial QB parameter.—The traditional detectors

work on the principle that a photoelectron is emitted if a
photon is absorbed. Perturbation theory shows that the
emission probability is proportional to the intensity of light
and this leads to the counting distribution [6,15],

pn ¼
�
:
ð�n̂þ �Þn

n!
e�ð�n̂þ�Þ:

�
: (2)

Herein, the operator n̂ represents the photon number, � the
detection efficiency, � the number of noise or dark counts,
and the: � : notation indicates the normal ordering prescrip-
tion. For on-off detectors the mechanism is different. The
detector clicks for any number of photons and does not
click if the field is in the vacuum state. We showed recently
that if one employs N on-off detectors, then the counting
distribution is given by [14]

ck ¼
�
:

N!

k!ðN � kÞ! ðe
�ð�n̂þ�Þ=NÞN�kð1̂� e�ð�n̂þ�Þ=NÞk:

�
:

(3)

Here � is the noise count of the whole PNR detector
system, whereas in Ref. [14] we considered the noise
counts of an individual on-off detector. We also observed,
that the counting or click statistics converges to the true
statistics with increase in the number of detectors.
However this convergence is slow as it goes as 1=N. For
coherent states, Eqs. (2) and (3) reduce to the Poisson and
binomial statistics, respectively.
Because the counting distribution has a different form,

one would expect that one needs a measure different from
the Mandel QM parameter to characterize nonclassical-
ity. Note that the traditional photocounting distribution
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involves the expectation of a normally ordered Poisson
distribution, whereas the click statistics involves a nor-
mally ordered binomial one. We expect that an appropriate
measure of the nonclassical statistics would be the sub-
binomiality of the distribution. Hence we introduce QB

defined by

QB ¼ N
hð�cÞ2i

hciðN � hciÞ � 1; (4)

where hci is the mean number of clicks, and hð�cÞ2i is the
variance of the click statistics ðckÞNk¼0,

hci ¼ XN
k¼0

kck and hð�cÞ2i ¼ XN
k¼0

ðk� hciÞ2ck: (5)

The moments hci and hð�cÞ2i are defined the sense of
classical probabilistic quantities.

This QB possesses the following properties: (1) The QB

parameter must not yield negative values for classical
states; (2) For any quantum state having a binomial count-
ing statistics ðckÞNk¼0, QB should be zero; (3) It is based on

first and second moments of ðckÞNk¼0; (4) For N ! 1, QB

should converge to QM.
The definition of QB requires at least two on-off detec-

tors. A single on-off detector only yields one click and no
click with probability c0 ¼ p and c1 ¼ 1� p (0�p�1),
respectively. Thus, any quantum state has a binomial
statistics, QB ¼ 0, as long as a single detector is used.

We next prove that QB < 0 is a measure of nonclassi-
cality for measurements with N on-off detectors. For this
purpose, it is convenient to use the generating function of
the click statistics

fðxÞ ¼ XN
k¼0

ckx
k ¼ h:½xð1̂� e�ð�n̂þ�Þ=NÞ þ e�ð�n̂þ�Þ=N�N:i:

(6)

From the derivatives of f, one can obtain all moments of
the statistics. It can be shown that the variance hð�cÞ2i
reads as

hð�cÞ2i ¼ NðN � 1Þh:ð�e�ð�n̂þ�Þ=NÞ2:i þ N

�
1� hci

N

� hci
N

;

(7)

with hci=N ¼ 1� h: exp½�ð�n̂þ �Þ=N�:i, cf. [16].
Rewriting this equation according to Eq. (4),

QB ¼ ðN � 1Þh:ð�e�ð�n̂þ�Þ=NÞ2:i
h:e�ð�n̂þ�Þ=N:ið1� h:e�ð�n̂þ�Þ=N:iÞ ; (8)

we obtain the binomial QB parameter in its explicit form.
Note that the parameter QB, as it is clearly seen from this
result, depends on higher-order moments of the photon
number statistics, which is not the case for Mandel QM

parameter given in Eq. (1). Such higher-order moments are

beginning to be studied in experiments [17,18]. For a
classical state, when the P function has the properties of
a classical probability distribution [19], it yields that any
normally ordered variance is non-negative. In addition,
hci=N and 1� hci=N are non-negative mean values. It
follows for classical states

QB � 0: (9)

Let us note that the individual expectation values are
independent of the phase. Altogether, this proves the claim
that a negative binomial QB value implies a nonclassical
photon statistics.
Concerning the convergence properties of QB, we can

use the following result. In Ref. [14], we have already
shown that the click statistics converges to the photo
statistics for N ! 1. It follows that hð�cÞ2i=hci converges
to hð�nÞ2i=hni. The only difference left between QM and
QB, cf. Eqs. (1) and (4), is

N

N � hci ¼
1

1� hci
N

: (10)

Because hci converges to the finite value of hni, we obtain
QB ! QM for N ! 1: (11)

As a last property we verify that for coherent statesQB¼0.
According to Eq. (3), ðckÞNk¼1 is a binomial distribution

with

hci ¼ Nð1� e�ð�j�j2þ�Þ=NÞ;
hð�cÞ2i ¼ Nð1� e�ð�j�j2þ�Þ=NÞe�ð�j�j2þ�Þ=N:

(12)

Applying the binomial QB parameter, we obtain the
desired interpretation, QB ¼ 0. The parameter QB does
not lead to fake nonclassicality, for any choice of noise
or detection efficiency. For more general states having a
binomial statistics, we can formulate similarly QB ¼ 0.
Our binomial QB parameter is directly constructed for

measurements with on-off detector systems, including im-
perfections. It can discern nonclassicality in experiments
using only two or more on-off detectors. In the following,
we apply the QB parameter to typical examples in quantum
optics. We consider three kinds of states having comparable
mean photon numbers. Usually the main source of imper-
fections is caused by the quantum efficiency �< 1, so that
we may assume a negligible noise count rate, � � 0.
Thermal states.—First, we may consider a classical,

thermal state, with a mean photon number hni ¼ �n and a
variance hð�nÞ2i ¼ �nð �nþ 1Þ. Such a state enables us to
highlight the difficulty associated with the value of QM

for data from on-off detectors. It has a positive Mandel
parameter,QM ¼ �n. The efficiency simply scales the mean
photon number �n to a smaller value, � �n.
Using the P function of the thermal state, we obtain the

click statistics in the form of a beta-binomial distribution
ck ¼ fN;�;�ðkÞ for � ¼ 1 and � ¼ N= �n,
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ck ¼ N!

k!ðN � kÞ!
�ðN � kþ N

�nÞ�ðkþ 1Þ
�ðN þ 1þ N

�nÞ
N

�n
; (13)

see Supplemental Material [16]. The well-known mean
values and variances of such distributions yield QB values,

QB ¼ N þ N
�n þ 1

N
�n þ 2

� 1 ¼ N � 1
N
�n þ 2

: (14)

In Fig. 1, we plotted different parameters depending on
the number N of on-off detectors, with 2 � N � 16.
Determining the Mandel parameter value from the click
statistics—denoted as QF—leads to fake nonclassicality.
The binomial parameter, QB > 0, correctly displays the
classicality of thermal light. For large numbers of on-off
detectors, QB approaches the value of QM ¼ �n.

Fock states.—Second, we may study a Fock state for m
photons. To solely consider the effects of on-off detectors,
we choose the detection efficiency � ¼ 1. The photon
statistics of the Fock state is a singular one, pn ¼ �n;m

and QM ¼ �1.
To obtain the click statistics from the true photo statistics,

we apply Eq. (14) of Ref. [14] to get

ck ¼
X1
n¼0

N!

k!ðN � kÞ!
@nyðey � 1Þkjy¼0

Nn pn: (15)

The particular example of a Fock state yields

ck ¼ N!

k!ðN � kÞ!
@my ðey � 1Þkjy¼0

Nm : (16)

The mean click number hci and the variance hð�cÞ2i are
given by

hci ¼ N

�
1�

�
1� 1

N

�
m
�
; (17)

hð�cÞ2i ¼ NðN � 1Þ
�
1� 2

�
1� 1

N

�
m þ

�
1� 2

N

�
m
�

þ hci � hci2; (18)

cf. [16]. Thus, the analytical expression of theQB parameter
for m photons is

QB ¼ ðN � 1Þ N
mðN � 2Þm � ðN � 1Þ2m

½Nm � ðN � 1Þm�ðN � 1Þm : (19)

In Fig. 2, we plotted the QB parameter depending on the
number of photons, m, and the number of available on-off
detectors, N. The verification of a nonclassical photon
number statistics can be directly observed from QB < 0.
This is possible, although the considered detector system
is unable to measure the true photo statistics. It is also
clear, that a larger number of photons m requires a higher
number of detectors to significantly identify nonclassical-
ity. Surprisingly, a measurement using only two on-off
detectors can be used to infer nonclassical light. We can
also observe that for large numbers of on-off detectors QB

approaches the value QM ¼ �1.
Single-photon-added thermal state.—In this last ex-

ample, we show that the binomialQB parameter can detect
nonclassical photon statistics beyond sub-Poisson ones.
For this purpose let us study a single-photon-added thermal
state (SPATS) [20]. This state has been experimentally
realized [21], and its nonclassicality has been verified by
reconstructing its P function [22]. The P function of the
SPATS is given by

PSPATSð�Þ ¼ 1

� �n3
½ð1þ �nÞj�j2 � �n�e�ðj�j2= �nÞ: (20)

A straightforward computation of QM yields for the effi-
ciency �

QM ¼ �
�n2 � 1

2

�nþ 1
2

(� 0 for �n � ffiffiffiffiffiffiffi
0:5

p
;

<0 for �n <
ffiffiffiffiffiffiffiffi
0:5:

p (21)

For �n >
ffiffiffiffiffiffiffiffi
1=2

p
, the QM parameter cannot identify the non-

classicality of the SPATS.

FIG. 1 (color online). Different Q parameters are plotted for a
classical, thermal state, with hni ¼ � �n ¼ 2 and � ¼ 0. The true
Mandel parameter is QM, the binomial one is QB. Using the
definition in Mandel’s form for click statistics yields QF.

FIG. 2 (color online). The plot shows the binomial QB

parameter for the click statistics measured by N on-off detectors,
with 2 � N � 12. The computed example shows the sub-
binomial statistics of m photon Fock states (1 � m � 5).
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In the following we apply the QB parameter to the
SPATS. Some algebra, using the PSPATS distribution, yields

QB ¼ ðN � 1Þ Ið
2�
N Þ � Ið�NÞ2

Ið�NÞ½1� Ið�NÞ�
; (22)

the needed integral Ið�Þ can be analytically computed [16].
In Fig. 3, we plotted the binomialQB parameter depending
on �n. For the chosen parameters we have a super-Poisson
statistics, QM � 0. However, we find regions with a sub-
binomial statistics,QB < 0. We obtain the surprising result
that the click statistics can be more suitable to detect
nonclassicality than the QM parameter, even for a small
number of on-off detectors.

Summary and conclusions.—We established the bino-
mial QB parameter. It serves for the identification of non-
classical radiation measured with multiple on-off detectors
including imperfections. A negative parameter, QB < 0,
refers to sub-binomial light. We showed that the binomial
QB parameter convergences to the original Mandel QM

parameter for large numbers of on-off detectors. It is worth
mentioning that our method does not require a reconstruc-
tion of the true photon number statistics.

We applied our method to typical states, for example,
Fock states representing sub-binomial light. We also
studied the statistics of a SPATS measured by only a small
number of on-off detectors. In this case, the QB parameter
can identify nonclassical, in particular sub-binomial, states
of light beyond the QM parameter. From a more general

perspective, sub-binomial light and its characterization
may be of vital relevance whenever modern quantum
technologies require the discrimination of photon number
states.
This work was supported by the Deutsche Forschungs-
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FIG. 3 (color online). The plot shows the binomial QB pa-
rameter for the counting statistics measured by a PNR detector
with N ¼ 2, 3, 4, 5 on-off detectors. The computed example is a
SPATS with a mean thermal photon number

ffiffiffiffiffiffiffi
0:5

p � �n � 4
ffiffiffiffiffiffiffi
0:5

p
.

The individual plots have a quantum efficiency � ¼ 0:5, 0.7, 0.9.
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