
Constraining the Nuclear Equation of State at Subsaturation Densities

E. Khan,1 J. Margueron,1 and I. Vidaña2
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Only one-third of the nucleons in 208Pb occupy the saturation density area. Consequently, nuclear

observables related to the average properties of nuclei, such as masses or radii, constrain the equation of

state not at the saturation density but rather around the so-called crossing density, localized close to the

mean value of the density of nuclei: � ’ 0:11 fm�3. This provides an explanation for the empirical fact

that several equation of state quantities calculated with various functionals cross at a density significantly

lower than the saturation one. The third derivative M of the energy per unit of volume at the crossing

density is constrained by the giant monopole resonance measurements in an isotopic chain rather than

the incompressibility at saturation density. The giant monopole resonance measurements provide M ¼
1100� 70 MeV (6% uncertainty), whose extrapolation gives K1 ¼ 230� 40 MeV (17% uncertainty).
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Constraining the nuclear equation of state (EOS) and
reducing the uncertainties on nuclear matter properties in
dense stellar objects such as neutron stars and supernovae
is one of the major goals of nuclear physics. To do so
observables such as masses, radii or energy centroid of the
isoscalar giant monopole resonance (GMR) are measured
in finite nuclei. Relating the EOS to such observables is
usually undertaken in several ways. The liquid drop ex-
pansion [1] is one of the most used methods. In its gener-
alized version, one performs a development of a quantity
(the mass for instance) considered at saturation density
(volume term), adding several terms such as the surface
one. It should be noted that taking the volume term at
saturation density is based on the fact that the inner part
of the nuclei density is close to the saturation. Another
method is the so-called local density approximation [2]. In
this approach the global properties in nuclei are obtained
from considering nuclei as local pieces of nuclear matter.
Finally, another method is based on the microscopic ap-
proach, relying on energy density functionals (EDF): using
various EDFs, a correlation diagram is drawn between the
predicted observable and a related property of the EOS.
The measurement of the observable allows the validation
of EDF and the corresponding property of the EOS [3–6].
For instance, the neutrons skin measurement is correlated
with the slope of the symmetry energy. It should be noted
that usually EDF are designed using masses, radii but also
the nuclear incompressibility [7,8].

Each of these methods comprise, however, limitations.
The liquid drop expansion is known not to be accurate
enough in the case of the incompressibility at the saturation
density [9,10], although the inclusion of higher other terms
is relevant [11]. The liquid drop expansion of the mass has
been successful, providing an accurate determination of
the saturation energy. This quantity is now used in EDF
determination, but this is an exceptional case, related to the

profusion of data available on masses. In the case of the
local density approximation, its validity is generally ques-
tionable for finite size systems. Finally, in the case of the
microscopic approach, the EDF employed has usually been
adjusted to data on magic nuclei, whereas most applica-
tions are aimed to be used for deformed open-shell nuclei.
However, there may be a general consensus that the micro-
scopic approach should be used in fine, because of its
accuracy and reliability.
It seems for now difficult to straightforwardly determine

the nuclear incompressibility even with the microscopic
method. The earliest microscopic analysis came to a value
of K1 ¼ 210 MeV [9], but with the advent of microscopic
relativistic approaches, a value of K1 ¼ 260 MeV was
obtained [12]. It has been shown that this value is not
determined accurately and that the density dependence of
the EDF as well as pairing effects (and, therefore, the
shell structure) have an impact on the determination of
K1 [13–15]. Using K1 in the design of EDF may not be a
sound approach since it cannot be safely determined by the
microscopic method. Therefore, the method of determina-
tion of the nuclear incompressibility has to be rethought
and more generally, it is necessary to clarify the link
between nuclear matter EOS determination and nuclear
observables.
First, it should be noted that the liquid drop expansion is

not a perturbative one since the surface properties of the
nucleus are almost as important as the bulk one. Hence, it
may be a misleading idea to consider the nucleus as mainly
composed of nucleons at saturation density with a few at
the surface. Let us consider the case of 208Pb which is
usually considered as a benchmark for extracting bulk
properties. Figure 1 shows the total density calculated in
the Skyrme Hartree-Fock (HF) approach. The lower part
shows the usual representation of the density whereas the
upper part displays an equivalent representation with an
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X axis scaled as r3. This allows taking into account the
increase of nucleons per volume unit; the total number of
nucleons corresponds to the integral of constant steps of
the radial density represented on the upper part of Fig. 1.
It is now perceptible that about one-third of the nucleons of
the 208Pb nucleus lie in the saturation density area, whereas
two-thirds are localized in the surface at a density lower
than the saturation one. Therefore, even in heavy nuclei,
the contribution of the surface is larger with respect to
the volume one, raising the question of the legitimacy of
constraining EOS quantities at saturation density by
measurements of nuclear observables.

Another illustration is given by calculating the mean
density of the 208Pb nucleus. Using a Skyrme-HF calcu-
lation, one obtains h�i ¼ 0:12 fm�3 in 208Pb with a vari-

ance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih�2i � h�2ip ¼ 0:04 fm�3. Therefore, the density

value characterizing a nucleus is not the saturation one
(�0 ¼ 0:16 fm�3) but a significantly lower one, with a
range spanning from �0=2 to �0. It should be noted that
the dependence of the mean density on the nucleus is rather
weak: 0:11 fm�3 for 120Sn. In light nuclei, the mean den-
sity drops down as expected: 0:07 fm�3 for 40Ca.

Consequently, the measurement of an averaged observ-
able in a nucleus is more properly related to a correlated
EOS quantity defined around the mean density than at the
saturation density. This fact is illustrated on Fig. 2, where
the density-dependent incompressibility, defined by [16,17]

Kð�Þ ¼ 9

��ð�Þ ¼ 9�2 @
2Eð�Þ=A
@�2

þ 18

�
Pð�Þ; (1)

and obtained from various EDFs is plotted with several
Skyrme, Gogny and relativistic interactions, all designed
to describe observables in nuclei such as masses
and radii. They intersect around the crossing density

�c ’ 0:7�0 ’ 0:11 fm�3. The existence of a crossing den-
sity has been empirically noticed in previous works on the
symmetry energy (Fig. 2 of Ref. [6]), pairing gap (Fig. 2 of
Ref. [18]) or the neutron EOS (Fig. 2 of Ref. [3] and Fig.1 of
Ref. [4]), and we provide here an explanation, related to the
mean density: when designing EDF with nuclear observ-
ables, the corresponding EOS is constrained not at the
saturation density but rather around the mean density (the
crossing density). In the case of the symmetry energy,
the value at a density � ’ 0:11 fm�3 is taken to be around
25MeV, a value close to the symmetry energy coefficient of
the liquid drop expansion [5,6,19], as an empirical prescrip-
tion. This last value contains both a volume and surface
terms, and thus represents the symmetry energy extracted
from nuclei observables. For the incompressibility, the
GMR is known to be related to the mean square radius of
the nucleus by the energy weighted sum rule [2]. In the
design of EDFs, the considered constraint on nuclear radii
induces a constraint on the compression mode, likely ex-
plaining the crossing around 0:7�0 observed on Fig. 2. This
shows the universality of the crossing effect, arising from
the constraints encoded in the EDF fromnuclei observables.
Due to this crossing area, a larger K1 ¼ Kð�0Þ value for a
given EDF can be compensated by lower values of Kð�Þ at
sub-crossing densities, so to predict a similar energy of the
GMR in nuclei: the GMR centroid is related to the integral
of Kð�Þ over a large density range [17]. This allows us to
understand howEDFwith differentK1 can predict a similar
energy of the GMR, as noted in Ref. [15].
Various EDF’s shall exhibit various density dependen-

cies around the crossing point. At first order the derivative
of the incompressibility (or symmetry energy or pairing
gap) at this point will differ between various EDF’s.
Complementary measurements in nuclei are needed to
characterize these derivatives. For instance in Ref. [3,4]
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FIG. 2 (color online). EOS incompressibility calculated with
various functionals, showing the crossing density around
0:7�0 ’ 0:11 fm�3.
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FIG. 1. Matter density of 208Pb calculated with the HF ap-
proach using the SLy4 functional with different X axis scales.
Top: representation taking into account the nucleons’ distribu-
tion in the nucleus. Bottom: usual representation.
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the derivative of the neutron EOS around �c ’ 0:11 fm�3

is found to be constrained by neutron skin measurements in
208Pb. The associated interpretation was that the 0:11 fm�3

density was considered as the neutron saturation density
in nuclei. We provide an alternative and general view:
0:11 fm�3 corresponds to the crossing density, as seen
on Fig. 2.

We apply this method to the determination of the nuclear
incompressibility. When the giant monopole resonance is
measured and well reproduced by a given EDF, it shall
therefore not be correlated with the incompressibility of
EOS at saturation density but rather with its first derivative
M around the crossing density. It should be recalled that the
crossing density exists because the EDF are determined by
including nuclear observables such as masses and radii in
their fit. On Fig. 2 the crossing point at �c ’ 0:7�0 yields
Kð�cÞ ’ 40 MeV for the incompressibility (this is analo-
gous to the fixed symmetry energy taken to be 25 MeV, as
discussed above). To be consistent with a generalized
liquid drop expansion [20], the derivative M of the incom-
pressibility at this point is defined by:

M ¼ 3�K0ð�Þj�¼�c
; (2)

where K0ð�Þ is the derivative of the incompressibility
density dependent term defined in Eq. (1).

Most of the GMR measurements have been performed
on 208Pb and data on other nuclei like the Sn isotopic chain
is relevant [21]. In Fig. 3 the GMR prediction using the
constrained Hartree-Fock (CHF) method as a function of
M is shown for various Skyrme EDF’s in 208Pb and 120Sn.
The CHF method is a sum rule approach to calculate the
centroid energy of the isoscalar GMR:

EISGMR ¼
ffiffiffiffiffiffiffiffiffi
m1

m�1

s
: (3)

The m1 moment is evaluated by the double commutator
using the Thouless theorem [2] and for the m�1 moment,
the CHF approach is used [14,22,23]: the CHF
Hamiltonian is built by adding the constraint associated
with the IS monopole operator. The CHF method has the
advantage to very precisely predict the centroid of the
GMR using the m�1 sum rule. To be comprehensive,
Fig. 3 also displays values for several relativistic and the
Gogny D1S EDFs in the case of 208Pb.
The value of M deduced from both nuclei is compatible

within few percents. In order to derive a sound value ofM,
we have further performed similar calculations in the
112–124Sn isotopes, as well as in 90Zr and 144Sm nuclei,
leading to M ’ 1100 MeV� 70 MeV. The contributions
to the uncertainty shall come from the small variance
between the mean density in the respective nuclei com-
pared to the crossing density, the isospin dependence of the
incompressibility and the pairing effects. The linear corre-
lation observed on Fig. 3 is striking, since the interactions
employed can have a symmetry energy spanning from
30 to 37 MeV. This shows that the present results moder-
ately depend on the isospin asymmetry of the system
studied. The neutron vs proton asymmetry parameter
� ¼ ðN � ZÞ=A also remains rather constant in the con-
sidered nuclei for the GMR such as 208Pb and stable
Tin isotopes: � ’ 0:2, validating the present isospin-
independent approach.
It should be noted that the present method clarifies the

issue of determining different incompressibility values at
saturation when using either the Pb or the Sn data [14,24]: a
close M value is found with these two data sets. However
the remaining discrepancy of the M values deduced from
the Sn and the Pb measurements shows that the proper
density dependence of the EDFs has not been revealed yet.
Another striking feature is that the Gogny and relativistic
EDFs are found on the same linear correlation than the
Skyrme one, showing the universality of the EGMR vs M
correlation, contrary to the EGMR vs K1 one: it is well
known that relativistic EDFs can predict a similar EGMR in
208Pb but with a significantly larger value of K1 [12].
Let us now investigate why a clear correlation exists

between the centroid of the GMR and K1 in the specific
case of the Skyrme functionals. [15]. Figure 4 displays the
relative contribution of the kinetic, central (t0), finite range
(t1, t2) and density (t3) terms of the Skyrme functionals to
the EOS and its derivative values at the crossing density. A
striking regularity is observed among the functionals used.
The dominant terms are the central and the density ones,
but the central term vanishes from the second derivative of
the EOS and beyond, allowing the density term (in ��) to
dominate alone. Therefore, the second derivative terms and
beyond are correlated to each other, implying that the
correlation between M and EGMR is propagated to the
one between K1 and EGMR: a linear correlation is pre-
served between M and K1 due to the vanishing of the
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central term from the second derivative and beyond of
the equation of state. In other words, the density depen-
dence of the incompressibility, driven by these derivatives,
is correlated to M. Therefore, K1 is correlated to M, and
this outcome is similar for all Skyrme functionals as seen
on Fig. 4: the (EGMR, K1) linear correlation may be due to
the similar form of the density dependence among the
Skyrme EDFs.

But this linear correlation is deteriorated when including
together both Skyrme and relativistic EDF predictions, as
mentioned above. M shall be the exclusive quantity which
can be deduced from GMRmeasurements, whereas theK1
determination relies on additional density dependence as-
sumptions. Using theM value at the crossing point, a linear
expansion provides K1 ¼ 230 MeV. An uncertainty of
�40 MeV can be inferred from the spreading ofK1 values
on Fig. 2 obtained with the various functionals, which is of
the order of �17%. It is, therefore, argued that measure-
ments in nuclei constrain the EOS around the crossing
density (namely the derivative of the EOS quantity at the
crossing density) and deducing values at saturation density
remains a mainly model-dependent extrapolation. In the
case of nuclear incompressibility, it is proposed to change
the usual EGMR vsK1 correlation plot and to replace it by a
more reliable and universal EGMR vs M plot (Fig. 3),
where M is the derivative of the incompressibility at the
crossing density. The measurement of the GMR in more
neutron-rich nuclei [25,26] will certainly open the possi-
bility to study a part of the isospin dependence of the
incompressibility.
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