$B-L$ Violating Proton Decay Modes and New Baryogenesis Scenario in $SO(10)$

K. S. Babu^{1,[*](#page-4-0)} and R. N. Mohapatra^{2,[†](#page-4-1)}

¹Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
²Maryland Center for Eundamental Physics, Department of Physics, University of Maryland, College Park

²Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, Maryland 20742, USA (Received 29 March 2012; published 30 August 2012)

> We show that grand unified theories based on $SO(10)$ generate quite naturally baryon number violating dimension seven operators that violate B-L, and lead to novel nucleon decay modes such as $n \rightarrow e^- K^+$, $e^-\pi^+$ and $p \to \nu\pi^+$. We find that in two-step breaking schemes of nonsupersymmetric $SO(10)$, the partial lifetimes for these modes can be within reach of experiments. The interactions responsible for these partial lifetimes for these modes can be within reach of experiments. The interactions responsible for these decay modes also provide a new way to understand the origin of matter in the Universe via the decays of grand unified theory (GUT) scale scalar bosons of $SO(10)$. Their (B-L)–violating nature guarantees that the GUT scale induced baryon asymmetry is not washed out by the electroweak sphaleron interactions. In minimal $SO(10)$ models this asymmetry is closely tied to the masses of quarks, leptons and the neutrinos.

DOI: [10.1103/PhysRevLett.109.091803](http://dx.doi.org/10.1103/PhysRevLett.109.091803) PACS numbers: 12.10.Dm, 11.30.Fs, 12.10.Kt, 12.60.Cn

Baryon number violation is a very sensitive probe of physics beyond the standard model (SM). Interactions that violate the baryon number (B) are not present in the renormalizable part of the SM Lagrangian but can arise through effective higher dimensional operators. The leading B-violating operators [[1\]](#page-4-2) have dimension six and are hence suppressed by two powers of an inverse mass scale. These operators arise naturally when SM is embedded in grand unified theories (GUTs) such as $SU(5)$ and $SO(10)$. They lead to nucleon decay modes such as $p \rightarrow e^+ \pi^0$ and $p \rightarrow \bar{\nu} K^{+}$, which conserve baryon number minus lepton
number $R_{-}I$, symmetry Experimental searches to date number, B-L symmetry. Experimental searches to date have primarily focused on these modes with the latest limits on proton lifetime constraining the masses of the heavy mediators to be larger than about 10^{15} GeV. This is in accord with the scale inferred from the unification of gauge couplings.

Going beyond the $d = 6$ B-violating operators, the nextto-leading ones have $d = 7$ and obey the selection rule to novel nucleon decay modes such as $n \to e^- K^+$, $e^- \pi^+$,
and $n \to \nu \pi^+$ which have received less attention. In this $\Delta(B-L) = -2$ for nucleon decay [\[2](#page-4-3)]. These operators lead and $p \rightarrow \nu \pi^+$, which have received less attention. In this letter we show that these $d = 7$ operators arise naturally Letter, we show that these $d = 7$ operators arise naturally in unified theories based on $SO(10)$, upon the spontaneous breaking of B-L, which is part of the gauge symmetry. In particular, we find that in nonsupersymmetric $SO(10)$ models with an intermediate scale so that gauge couplings unify, the partial lifetime to these decay modes can be within reach of ongoing and proposed experiments. Furthermore, we show that these new modes provide a novel way to understand the origin of matter in the Universe. This mechanism relies on the fact that owing to their B-L breaking nature, a GUT scale-induced baryon asymmetry would not be affected by the electroweak sphalerons [\[3](#page-4-4)] and would survive down to low temperatures. The observed baryon number of the Universe then would carry the direct imprint of GUT scale physics. This is unlike the B-L–preserving baryon asymmetry induced in the decays of GUT mass particles such as in $SU(5)$, which is, however, washed out by the sphaleron interactions, leaving no trace of GUT physics. We show that in minimal $SO(10)$ models [\[4\]](#page-4-5), which have been highly successful in predicting large neutrino oscillation angles, including a relatively large value of $\sin^2 2\theta_{13} \approx (0.085 - 0.095)$, consistent with recent results [\[5\]](#page-4-6), the baryon asymmetry of the right magnitude is generated by the new $B-L$ –violating mechanism. The results of this Letter should provide motivations to search for B-L–violating semileptonic decay modes of the nucleon in the ongoing and next round of experiments. Their observation would furnish evidence against the simple one-step breaking of GUT symmetry, and could also resolve the mystery behind the origin of matter in the Universe.

We start by writing down the $d = 7 B$ –violating effective operators in the SM [\[2\]](#page-4-3) in the standard notation for fermion fields:

$$
\tilde{O}_1 = (d^c u^c)^* (d^c L_i)^* H_j^* \epsilon_{ij},
$$
\n
$$
\tilde{O}_2 = (d^c d^c)^* (u^c L_i)^* H_j^* \epsilon_{ij},
$$
\n
$$
\tilde{O}_3 = (Q_i Q_j) (d^c L_k)^* H_i^* \epsilon_{ij} \epsilon_{kl},
$$
\n
$$
\tilde{O}_4 = (Q_i Q_j) (d^c L_k)^* H_i^* (\tilde{\tau} \epsilon)_{ij} \cdot (\tilde{\tau} \epsilon)_{kl},
$$
\n
$$
\tilde{O}_5 = (Q_i e^c) (d^c d^c)^* H_i^*,
$$
\n
$$
\tilde{O}_6 = (d^c d^c)^* (d^c L_i)^* H_i,
$$
\n
$$
\tilde{O}_7 = (d^c D_\mu d^c)^* (\tilde{L}_i \gamma^\mu Q_i),
$$
\n
$$
\tilde{O}_8 = (d^c D_\mu L_i)^* (\tilde{d}^c \gamma^\mu Q_i),
$$
\n
$$
\tilde{O}_9 = (d^c D_\mu d^c)^* (\tilde{d}^c \gamma^\mu e^c).
$$

Here D_{μ} stands for the covariant derivative, and $H(1, 2, 1/2)$ is the Higgs doublet. These operators obey $(B-L) = +2$ selection rule and mediate nucleon decays of

the type $n \to e^- K^+$, $e^- \pi^+$, and $p \to \nu \pi^+$. We first show
how these operators arise naturally in $SO(10)$ theories 161 how these operators arise naturally in $SO(10)$ theories [\[6\]](#page-4-7) when *B-L* symmetry contained in it is broken. This breaking may occur at the GUT scale as in models with supersymmetry, or at an intermediate scale M_I below the GUT scale, as in nonsupersymmetric $SO(10)$, which requires such a scale to be compatible with gauge coupling unification. To see the origin of Eq. [\(1](#page-0-0)) in $SO(10)$ via scalar boson exchange, we write down the Yukawa couplings in the most general setup. Noting that the fermion bilinears contain $16 \times 16 = 10_s + 120_a + 126_s$, the Yukawa couplings are [\[7](#page-4-8)]

$$
\mathcal{L}(16_i 16_j 10_H) = h_{ij} \bigg[(u_i^c Q_j + v_i^c L_j) h - (d_i^c Q_j + e_i^c L_j) \bar{h} + \bigg(\frac{\epsilon}{2} Q_i Q_j + u_i^c e_j^c - d_i^c v_j^c \bigg) \omega + (\epsilon u_i^c d_j^c + Q_i L_j) \omega^c \bigg], \quad (2)
$$

$$
\mathcal{L}(16_i 16_j \overline{126}_H) = f_{ij}[(u_i^c Q_j - 3v_i^c L_j)h - (d_i^c Q_j - 3e_i^c L_j)\overline{h} + \sqrt{3}i(\frac{\epsilon}{2}Q_iQ_j - u_i^c e_j^c + v_i^c d_j^c)\omega_1 \n+ \sqrt{3}i(Q_iL_j - \epsilon u_i^c d_j^c)\omega_1^c + \sqrt{6}(d_i^c v_j^c + u_i^c e_j^c)\omega_2 + 2\sqrt{3}i d_i^c L_j \rho - 2\sqrt{3}i v_i^c Q_j \overline{\rho} \n+ 2\sqrt{3}u_i^c v_j^c \eta - 2\sqrt{3}i u_i^c L_j \chi + 2\sqrt{3}i e_i^c Q_j \overline{\chi} - 2\sqrt{3}d_i^c e_j^c \delta + \sqrt{6}iQ_iL_j \overline{\Phi} + ...],
$$
\n(3)

$$
\mathcal{L}(16_{i}16_{j}120_{H}) = g_{ij}[(d_{i}Q^{j} + e_{i}^{c}L_{j})\bar{h}_{1} - (u_{i}^{c}Q_{j} + v_{i}^{c}L_{j})h_{1} - \sqrt{2}Q_{i}L_{j}\omega_{1}^{c} - \sqrt{2}(u_{i}^{c}e_{j}^{c} - d_{i}^{c}v_{j}^{c})\omega_{1} \n- \frac{i}{\sqrt{3}}(d_{i}^{c}Q_{j} - 3e_{i}^{c}L_{j})\bar{h}_{2} + \frac{i}{\sqrt{3}}(u_{i}^{c}Q_{j} - 3v_{i}^{c}L_{j})h_{2} - 2e_{i}^{c}Q_{j}\bar{\chi} + 2v_{i}^{c}Q_{j}\bar{\rho} - 2d_{i}^{c}L_{j}\rho + 2u_{i}^{c}L_{j}\chi \n- i\epsilon d_{i}^{c}d_{j}^{c}\bar{\eta} + 2iu_{i}^{c}v_{j}^{c}\eta + \sqrt{2}i\epsilon d_{i}^{c}u_{j}^{c}\omega_{2}^{c} + \sqrt{2}i(d_{i}^{c}v_{j}^{c} - e_{i}^{c}u_{j}^{c})\omega_{2} - \frac{\epsilon}{\sqrt{2}}Q_{i}Q_{j}\Phi - \sqrt{2}Q_{i}L_{j}\bar{\Phi} \n- 2id_{i}^{c}e_{j}^{c}\delta + i\epsilon u_{i}^{c}u_{j}^{c}\bar{\delta} + ...
$$
\n(4)

with h and f being symmetric and g being antisymmetric in flavor indices i, j. The $SU(3)_C \times SU(2)_L \times U(1)_Y$ quantum numbers of the various submultiplets in Eqs. (2) (2) – (4) (4) are $h(1,2,+1/2), \bar{h}(1,2,-1/2), \omega(3,1,-1/3), \omega^c(\bar{3},1,1/3),$ $\rho(3,2,1/6), \bar{\rho}(3,2,-1/6), \eta(3,1,2/3), \bar{\eta}(3,1,-2/3),$ $\Phi(3,3,-1/3), \Phi(3,3,1/3), \chi(3,2,7/6), \bar{\chi}(3,2,-7/6),$
 $\delta(3,1,-4/3)$ and $\bar{\delta}(3,1,4/3)$ $\delta(3,1,-4/3)$, and $\delta(\bar{3},1,4/3)$.

The *B-L* generator of $SO(10)$ is broken by the vacuum expectation value (VEV) of the SM singlet field Δ^c in $\overline{126}_H$,
which has $R-I = -2$ This VEV sunnlies large Majorana which has $B - L = -2$. This VEV supplies large Majorana masses for the right-handed neutrinos through the coupling $f_{ij}\sqrt{6}\nu_i^c\nu_j^c\Delta^c$. It also generates trilinear scalar couplings
of the type $e^*\omega H$, $e^*\omega H$, $e^*\omega H$, and $e^*\omega H$, thereby of the type $\rho^* \omega H$, $\eta^* \rho H$, $\rho^* \Phi H$, and $\chi^* \eta H$, thereby
inducing the $d = 7$ baryon number-violating operators of inducing the $d = 7$ baryon number-violating operators of Eq. (1) (1) , via the Yukawa couplings of Eqs. (2) (2) (2) – (4) (4) . The flavor-symmetric Yukawa couplings of Eqs. [\(2](#page-1-0)) and [\(3\)](#page-1-2) generate the operators \mathcal{O}_3 and \mathcal{O}_1 through the diagrams shown in Fig. [1.](#page-1-3)

The trilinear couplings in Fig. [1](#page-1-3) have different sources in $SO(10)$. The quartic coupling $(126)^4$, which is invariant,
contains the term $(2, 2, 15) \times (2, 2, 15) \times (1, 1, 6) \times (1, 3, \overline{10})$ contains the term $(2, 2, 15) \times (2, 2, 15) \times (1, 1, 6) \times (1, 3, \overline{10})$
under $SU(2)_L \times SU(2)_R \times SU(4)_C$ subgroup. The under $SU(2)_L \times SU(2)_R \times SU(4)_C$ subgroup. The
 ρ^* (3,2, -1/6) \subset (2,2,15), H(1,2,1/2) \subset (2,2,15), while
 ω (3,1 -1/3) \subset (1,16) and this coupling would contain $\omega(3, 1, -1/3) \subset (1, 1, 6)$, and this coupling would contain the term $\rho^* \omega H \bar{\Delta}^c$. The three nontrivial invariants of the type $(126)^2 \times (126^*)^2$ also contain this trilinear term type $(126)^2 \times (126^*)^2$ also contain this trilinear term.
Similarly the three quartic couplings $(120)^2 \times (126)^2$ Equality, the three quartic couplings $(120)^2 \times (126)^2$
would generate the trilinear terms $\phi^* n H^* \psi^* n H$ and Similarly, the three quartic couplings $(120)^{2} \wedge (120)^{2}$
would generate the trilinear terms $\rho^{*} \eta H^{*}$, $\chi^{*} \eta H$, and $\Phi^* \rho H^*$ vertices, and along with Eq. [\(4](#page-1-1)) would induce the remaining nonderivative $d = 7$ operators of Eq. ([1\)](#page-0-0). For a detailed discussion, see Ref. [\[6](#page-4-7)].

Such trilinear couplings are also present when the 126_H is replaced by a 16_H albeit in a slightly different way. The 16_H contains an SM singlet filed with $B-L = +1$, which acquires a GUT scale VEV and a $\bar{h}(1, 2, -1/2)$ field with $B-L = -1$. The trilinear scalar couplings of the types $16_H16_H10_H$ and $16_H16_H10_H$ would mix the $B-L = 0$ Higgs doublet $h(1, 2, 1/2)$ from the 10_H and the $h(1, 2, 1/2)$ Higgs doublet from the $\overline{16}_H$, which has $B-L = +1$. The light SM Higgs doublet then would have no definite $B - L$ quantum number. The (1, 2, 4) component of 16_H contains the field $\rho^*(3, 2, -1/6)$, and the contains $\omega(3, 1, -1/3)$ and thus the $(2, 1, \overline{4})$ of $\overline{16}_H$ contains $\omega(3, 1, -1/3)$, and thus the coupling $\rho^* \omega H$ is generated via the $16_H 16_H 10_H$ coupling.
The $d = 7$ operators of Eq. (1) can also arise by integrat-

The $d = 7$ operators of Eq. ([1\)](#page-0-0) can also arise by integrating out the vector gauge bosons $V_Q(3, 2, 1/6)$ and $V_{u}(\bar{3}, 1, -2/3)$ of $SO(10)$, which lie outside of $SU(5)$ [\[6](#page-4-7)].

FIG. 1. Effective baryon number violating $d = 7$ operators induced by the symmetric Yukawa couplings of 10_H and $\overline{126}_H$ of $SO(10)$.

The covariant derivative for the 126_H would contain the term $V_Q V_{\mu} H(\Delta^c)^{\dagger}$, which generates the $d = 7$ operators. When
16., is used instead of the 126., the covariant derivative Φ_H is used instead of the 126_H, the covariant derivative
would contain a similar term but now with $R-L = +1$ and would contain a similar term, but now with $B-L = +1$ and -1 for H and $\Delta^c \subset 16_H$, respectively.
Partial lifetime for B-L violating r

Partial lifetime for B-L violating nucleon decay.—The diagrams of Fig. [1](#page-1-3) lead to the following estimate for $n \rightarrow e^- \pi^+$ lifetime: $(B + L-)$ preserving nucleon decay has been studied in the context of R-parity breaking supersymmetry in Ref. [\[8\]](#page-4-9).)

$$
\Gamma(n \to e^- \pi^+)^\text{Fig.1}
$$

\n
$$
\approx \frac{|Y^*_{QQ\omega}Y_{Ld^c\rho}|^2}{64\pi}(1+D+F)^2\frac{\beta_H^2m_p}{f_\pi^2}\left(\frac{\lambda v v_R}{M_\rho^2}\right)^2\frac{1}{M_\omega^4}.
$$
\n(5)

Here, we have defined the Yukawa couplings of the ω and ρ fields appearing in Fig. [1](#page-1-3) to be $Y_{QQ\omega}^*$ and $Y_{Ld^c\rho}$. The factors D and F are chiral Lagrangian factors $D \approx 0.8$ and $F \approx 0.47$; $\beta_H \approx 0.012 \text{ GeV}^3$ is the nucleon decay matrix element $v_R = \langle \Delta^c \rangle$, and $v = \langle H^0 \rangle = 174$ GeV. We have
defined the trilinear counling of Fig. 1 to have a coefficient defined the trilinear coupling of Fig. [1](#page-1-3) to have a coefficient λv_R . The mass of $\omega(3, 1, -1/3)$ is constrained to be relatively large, as it mediates $d = 6$ nucleon decay. For $Y \approx$ 10^{-3} , $M_{\omega} > 10^{11}$ GeV must be met from the $d = 6$ decays. As an illustration, choosing $Y_{QQ\omega} = Y_{Ld^c\rho} = 10^{-3}$,
 $M = 10^{11}$ GeV, $M = 10^8$ GeV, and $\lambda v = 10^{11}$ GeV. $M_{\omega} = 10^{11}$ GeV, $M_{\rho} = 10^{8}$ GeV, and $\lambda v_R = 10^{11}$ GeV
in Eq. (5), we find $\tau_{\infty} \approx 3 \times 10^{33}$ yr. Such a spectrum is in Eq. [\(5](#page-2-0)), we find $\tau_n \approx 3 \times 10^{33}$ yr. Such a spectrum is motivated by the intermediate symmetry $SU(2)_L \times$ $SU(2)_R \times SU(4)_C$, which is found to be realized at $M_I \approx 10^{11}$ GeV from gauge-coupling unification [\[9](#page-4-10)]. As a second example, take $M_{\rho} = 10^6$ GeV, $M_{\omega} = 10^{16}$ GeV, $\lambda v_R = 10^{16}$ GeV, and $Y_{QQ\omega} = Y_{Ld^c\rho} = 3 \times 10^{-3}$. This choice of spectrum leads to $\tau_n \approx 4 \times 10^{33}$ yr. This spectrum can arise as follows. Suppose the $\rho(3, 2, 1/6)$ particle, along with a pair of (1, 3, 0) scalar particles (contained in the 45_H , 54_H , or 210_H needed for symmetry breaking) survive down to $M_I = 10^6$ GeV. The SM gauge couplings are found to unify at a scale $M_X \approx 10^{15}$ GeV in this case, as shown in Fig. [2.](#page-2-1) This scenario would predict observable rates for both the B-L–conserving and B-L–violating nucleon decay modes. Analogous results are obtained from the exchange of $\eta(3, 1, 2/3) - \rho(3, 2, 1/6)$ scalar bosons from 120_H. Since these particles do not induce $d = 6$ baryon number violation, they can both have mass of order M_I , which would enhance the nucleon decay rate.

While the $\Delta(B-L) = -2$ nucleon lifetime is in the ex-
rimentally accessible range for reasonable choice of perimentally accessible range for reasonable choice of parameters as shown, it is quite sensitive to the precise values of the intermediate scalar masses. For example, an increase in M_{ρ} and M_{ω} by a factor of 3 will increase the lifetime by a factor of $10⁴$. Not finding these modes will not exclude this class of $SO(10)$ models, but a discovery of the $\Delta(B-L) = -2$ nucleon decay mode would lend strong

FIG. 2 (color online). Unification of the three SM gauge couplings obtained with a light $\rho(3, 2, 1/6)$ and two (1, 3, 0) scalar multiplets at $M_I = 10^6$ GeV.

support to a new mechanism of baryogenesis via B-L– violating decays of scalars, to which we now turn.

New baryogenesis scenario at the GUT epoch.—We now present a new baryogenesis scenario at the GUT epoch, using the *B-L*–violating decay of the scalar $\omega(3, 1, -1/3)$ with a GUT scale mass. The magnitude of the asymmetry is directly linked to the neutrino masses, since the Yukawa couplings that induce the asymmetry are the same couplings that are involved in neutrino mass generation. (B-L asymmetry in decays of specific heavy particles has recently been discussed in Ref. [[10\]](#page-4-11).) To be concrete, we shall work in the framework of nonsupersymmetric $SO(10)$, although our results would hold for SUSY $SO(10)$ as well, with some minor modifications. The cou-plings of Eqs. ([2\)](#page-1-0)–[\(4](#page-1-1)) imply that ω has two-body decays into fermions of the type $\omega \to \bar{Q} \bar{Q}$, $\bar{u}^c \bar{e}^c$, $\bar{\nu}^c \bar{d}^c$, $u^c d^c$, QL .
These decays preserve $R-I$ as can be seen by assigning These decays preserve $B-L$, as can be seen by assigning $(B-L)(\omega) = -2/3$. Now, ω also has a two-body scalar decay $\omega \rightarrow \rho H^*$, as shown in Fig. 3(a), which uses the 20

20

1/62

1/62

1/62

10

1/63

1/63

10

1/63

1

FIG. 3. Tree-level diagram and one-loop corrections responsible for generating $B-L$ asymmetry in ω decay.

B-L breaking VEV of Δ^c . The scalar field ρ has two-body
fermionic decays of the type $\rho \to \bar{L} \bar{d}^c$, $\nu^c \Omega$ (the latter fermionic decays of the type $\rho \to \bar{L} \bar{d}^c$, $\nu^c Q$ (the latter
if kinematically allowed), which define *B-L* charge of a if kinematically allowed), which define $B-L$ charge of ρ to be $\pm 4/3$. Thus, the decay $\omega \rightarrow \rho H^*$ would violate *B-L* by -2 by -2 .

Let the branching ratio for $\omega \to \rho H^*$ be r, which pro-
ces a net *B-L* number of 4/3 and that for $\omega^* \to \omega^* H$ be duces a net *B-L* number of $4/3$, and that for $\omega^* \to \rho^* H$ be
 \overline{r} with net *B-L* = $-4/3$. The branching ratio for the \bar{r} , with net $B-L = -4/3$. The branching ratio for the two-fermion decays $\omega \rightarrow ff$ is then $(1 - r)$, which has $B-L = -2/3$, and that for $\omega^* \rightarrow f f$ is $(1 - \bar{r})$, which has

 $\epsilon_{B-L} = -\frac{E}{\pi |\lambda v_R|^2} \Im[\lambda v_R \text{Tr} \{ Y_{QL\omega^*}^{\intercal} Y_{Q\nu^c\bar{\rho}} M_{\nu^c} F(M_{\omega}, M_{\rho}, M_{\nu^c}) Y_{\nu^c L H} - Y_{d^c \nu^c \omega} Y_{d^c L \rho}^{\intercal} Y_{\nu^c L H} M_{\nu^c} F(M_{\rho}, M_{\omega}, M_{\nu^c}) \}$ $-Y_{d^c\nu^c\omega'}^T Y_{d^c\nu^c\omega} F'(M_\omega, M_{\omega'}, M_j)(\lambda' \nu_R)^*$ $\left\{ \frac{1}{2} \right\}$ (6)

where the three terms are in order from Figs. $3(b)-3(d)$, respectively. Here, we have defined the trilinear scalar vertices of Figs. [3\(a\)](#page-2-2) and [3\(d\)](#page-2-2) to have coefficients of λv_R and $\lambda' v_R$ in the Lagrangian. $Y_{Q\nu^c\bar{\rho}}$ is the Yukawa-coupling
matrix corresponding to the coupling $Q\nu^c\bar{\rho}$ etc. By stands matrix corresponding to the coupling $Q\nu^c\bar{\rho}$, etc.; Br stands
for the branching ratio $Br(\omega \to \rho H^*)$. A factor of 2 has for the branching ratio $Br(\omega \rightarrow \rho H^*)$. A factor of 2 has
been included here for the two $SI(2)$, final states in the been included here for the two $SU(2)_L$ final states in the decay. The functions F and F' are defined as

$$
F(a, b, c) = \ln(1 + a^2/c^2) + \Theta(1 - c^2/b^2)(1 - c^2/b^2),
$$

\n
$$
F'(a, b, c) = (1 - c^2/a^2)/(1 - b^2/a^2)\Theta(1 - c^2/a^2)
$$

\n
$$
\times (1 - c^2/a^2).
$$
\n(7)

Here Θ stands for the step function, signaling additional ways of cutting the diagram when $M_i < M_o$ or $M_i < M_o$ in Fig. [3.](#page-2-3) Figure $3(d)$ arises because in any realistic $SO(10)$ model there are at least two ω fields. The heavier ω field is denoted as ω' . We have also assumed that $M_{\omega} - M_{\omega}'$
 Γ so that there is no resonant enhancement for the de denoted as ω . We have also assumed that $M_{\omega} = M_{\omega} \gg \Gamma_{\omega}$, so that there is no resonant enhancement for the decay.
To estimate $\text{Br} = \text{Br}(\omega \to \rho H^*)$ appearing in Eq. (6) let

To estimate Br = $Br(\omega \rightarrow \rho H^*)$ appearing in Eq. [\(6](#page-3-0)), let
assume that ω is the field ω from 10 ω with Yukawa us assume that ω is the field ω from 10_H with Yukawa couplings as given in Eq. ([2](#page-1-0)). The partial widths for the decays $\Gamma_1(\omega \to \rho H^*)$ and $\Gamma_2(\rho \to ff)$ are then given by

$$
\Gamma_1(\omega \to \rho H^*) = \frac{|\lambda v_R|^2}{8\pi M_\omega} \left(1 - \frac{M_\rho^2}{M_\omega^2}\right),
$$
\n
$$
\Gamma_2(\omega \to ff) = \frac{\text{Tr}(h^\dagger h)}{4\pi} M_\omega,
$$
\n
$$
\Gamma_3(\Gamma_1 + \Gamma_2) \Gamma_4 \quad \text{and} \quad \Gamma_4(\Gamma_5 + \Gamma_6) \quad \text{and} \quad \Gamma_5(\Gamma_6) \quad \text{and} \quad \Gamma_6(\Gamma_7) \quad \text{and} \quad \Gamma_7(\Gamma_8) \quad \text{and} \quad \Gamma_8(\Gamma_7) \quad \text{and} \quad \Gamma_9(\Gamma_8) \quad \text
$$

with $Br = \Gamma_1/(\Gamma_1 + \Gamma_2)$. For $M_\omega = 10^{16}$ GeV, $h_{33} = 0.6$
(corresponding to the top quark Yukawa coupling (corresponding to the top quark Yukawa coupling at GUT scale) with other h_{ij} negligible, and $\lambda v_R =$ $(10^{14}, 10^{15}, 10^{16})$ GeV, one gets Br = $(1.4 \times 10^{-4}, 1.4 \times$ 10^{-2} , 0.58).

The B-L asymmetry ϵ_{B-L} of Eq. ([6\)](#page-3-0) will result in a baryon to entropy ratio Y_B given by

$$
Y_B \equiv \frac{n_B \cdot n_{\bar{B}}}{s} = \frac{\epsilon_{B-L}}{g_*} d,\tag{9}
$$

 $B-L = 2/3$. Thus, in the decay of a $\omega + \omega^*$ pair, a net
 $B-L$ number defined as ϵ_{B-L} is induced with B-L number, defined as ϵ_{B-L} , is induced, with $\epsilon = (B, I) + (B, I) = 2(r, \vec{r})$. The loop diagrams $\epsilon_{B-L} \equiv (B-L)_{\omega} + (B-L)_{\omega^*} = 2(r\overline{r})$. The loop diagrams
for $\omega \rightarrow \rho H^*$ are shown in Figs. 3(b) and 3(d) which for $\omega \to \rho H^*$ are shown in Figs. [3\(b\)](#page-2-2) and [3\(d\)](#page-2-2), which
involve the exchange of fermions. Since ω can also decay involve the exchange of fermions. Since ω can also decay to two on-shell fermions, these loop diagrams have absorptive parts and also CP violation.

We evaluate Fig. [3](#page-2-3) in a basis where the Majorana mass matrix M_{ν^c} of the ν^c fields is diagonal and real. The contributions of Figs. [3\(b\)](#page-2-2) and [3\(d\)](#page-2-2) to ϵ_{B-L} are found to be

where $g_* = 130$ is the total number of relativistic degrees
of freedom at the epoch when these decays occur. The of freedom at the epoch when these decays occur. The factor d in Eq. ([9\)](#page-3-1) is the dilution factor, which takes into account back reactions that would partially wash out the induced baryon asymmetry. Defining $K = \frac{\Gamma(\omega \to \rho H^*)}{2H} \Big|_{T=M_\omega}$, where *H* is the Hubble expansion rate, $H = 1.66g_*^{1/2} \frac{T^2}{M_{\text{Pl}}}$, the dilution factors can be written as $[11]$ $[11]$ $d \approx 1(K < 1)$
and $d \approx \frac{0.3}{(K > 1)}$ For $M = 10^{15}$ GeV and $\lambda v_{\text{B}} =$ and $d \approx \frac{0.3}{K(\ln K)^{0.6}} (K \gg 1)$. For $M_{\omega} = 10^{15}$ GeV and $\lambda v_R =$
(1014–1015–1016) GeV we find $K = (0.12, 12, 3, 1230)$ and $(10^{14}, 10^{15}, 10^{16})$ GeV, we find $K = (0.12, 12.3, 1230)$ and the corresponding dilution factors to be $d = (1.0, 1.4 \times$ 10^{-2} , 7.5×10^{-5}), with Br = $(1.3 \times 10^{-2}, 0.58, 1.0)$.

We now show how the GUT scale-induced baryon asymmetry in $\omega \rightarrow \rho H^*$ decay can consistently explain the
observed value of $Y_p = (8.75 \pm 0.23) \times 10^{-11}$ in a class observed value of $Y_B = (8.75 \pm 0.23) \times 10^{-11}$ in a class
of minimal $SO(10)$ models. In these models, a single 10. of minimal $SO(10)$ models. In these models, a single 10_H and a single $\overline{126}_H$ couple to fermions, as in Eqs. [\(2](#page-1-0)) and ([3\)](#page-1-2). It has been shown that these models lead to large mixing angles for solar and atmospheric neutrino oscillations. Furthermore, they predict $\sin^2 2\theta_{13} \approx (0.085-0.095)$, both in the non-SUSY and the SUSY versions [[4\]](#page-4-5), which is consistent with recent results from Daya Bay and other experiments [[5\]](#page-4-6). To illustrate how a realistic choice of parameters can generate acceptable Y_B , we choose the ω field to be almost entirely in the 10_H . We also choose $\lambda'v_R$
that appears in Fig. 3(d) to be small, so that the leading that appears in Fig. $3(d)$ to be small, so that the leading contribution to ϵ_{B-L} is from Fig. [3\(c\).](#page-2-2) In this limit, we find $\epsilon_{B-L} \approx \frac{2\sqrt{3}}{\pi}$ $\frac{\sqrt{3}}{\pi} \frac{|h_{33}f_3|^2}{|\lambda|} \{1 + \ln(1 + M_\rho^2/M_{\nu_3}^2)\} \sin \phi$. Here, we have kept only the third family Yukawa couplings and defined $\phi = \arg\{h_{33}^2 f_3^2 \lambda + \frac{\pi}{2}\}\$. Choosing $h_{33} \approx 0.6$
(the top quark Yukawa coupling at the GUT scale) and (the top quark Yukawa coupling at the GUT scale) and $\lambda = 0.25$, $v_R = 10^{16}$ GeV, $f_3 = 10^{-2}$ (so that $f_3v_R =$ 10^{14} GeV, consistent with the light ν_{τ} mass arising via
the seesaw mechanism) $\phi = 0.12$ we find $\epsilon_{\text{max}} = 1.6 \times$ the seesaw mechanism), $\phi = 0.12$, we find $\epsilon_{B-L} = 1.6 \times 1.9 \times 10^{-5}$ If $M = 10^{15}$ GeV then $\text{Br} = 0.96$ and 1.9×10^{-5} . If $M_{\omega} = 10^{15}$ GeV, then Br = 0.96 and $K = 197$ so that the dilution factor is $d = 5.6 \times 10^{-4}$ $K = 197$, so that the dilution factor is $d = 5.6 \times 10^{-4}$. This results in a net $Y_B = 8.2 \times 10^{-11}$, consistent with observations. We emphasize the intimate connection

between ϵ_{B-L} and neutrino masses, since $Y_{QL\omega}^{\dagger}$, $Y_{Q\nu^c\bar{\rho}}$, etc., present in ϵ_{B-L} are the 126 couplings that determine the neutrino masses via the seesaw mechanism.

In conclusion, we have shown that all $d = 7$ baryon number-violating operators that lead to nucleon decay modes such as $n \to e^- K^+$, $e^- \pi^+$, and $p \to \nu \pi^+$ emerge
paturally as effective low-energy operators in a wide class naturally as effective low-energy operators in a wide class of $SO(10)$ models. In nonsupersymmetric $SO(10)$ models with an intermediate scale, we find the rates for these nucleon decay modes to be within reach of experiments. We have also shown that the existence of these $B-L$ violating interactions allows a new scenario for baryogenesis where a B-L asymmetry is generated in the decay of GUT mass particles that survives to low temperatures, unaffected by the sphaleron interactions. In minimal $SO(10)$ models that predict large neutrino mixing angles, including θ_{13} , this new mechanism can explain the observed baryon asymmetry of the Universe.

The work of K. S. B. is supported in part by the U.S. Department of Energy Grant No. DE-FG02-04ER41306, and that of R. N. M. is supported in part by the National Science Foundation Grant No. PHY-0968854.

[*b](#page-0-1)abu@okstate.edu

[†](#page-0-1) rmohapat@umd.edu

[1] S. Weinberg, [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.43.1566) 43, 1566 (1979); F. Wilczek and A. Zee, [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.43.1571) 43, 1571 (1979); L. F. Abbott and M. B. Wise, Phys. Rev. D 22[, 2208 \(1980\).](http://dx.doi.org/10.1103/PhysRevD.22.2208)

- [2] S. Weinberg, Phys. Rev. D 22[, 1694 \(1980\)](http://dx.doi.org/10.1103/PhysRevD.22.1694); H. A. Weldon and A. Zee, Nucl. Phys. B173[, 269 \(1980\)](http://dx.doi.org/10.1016/0550-3213(80)90218-7).
- [3] V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov, Phys. Lett. 155B[, 36 \(1985\)](http://dx.doi.org/10.1016/0370-2693(85)91028-7).
- [4] K. S. Babu and R. N. Mohapatra, *[Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.70.2845)* **70**, 2845 [\(1993\)](http://dx.doi.org/10.1103/PhysRevLett.70.2845); B. Bajc, G. Senjanovic, and F. Vissani, [Phys. Rev.](http://dx.doi.org/10.1103/PhysRevLett.90.051802) Lett. 90[, 051802 \(2003\);](http://dx.doi.org/10.1103/PhysRevLett.90.051802) T. Fukuyama and N. Okada, [J.](http://dx.doi.org/10.1088/1126-6708/2002/11/011) [High Energy Phys. 11 \(2002\) 011;](http://dx.doi.org/10.1088/1126-6708/2002/11/011) H. S. Goh, R. N. Mohapatra, and S. P. Ng, [Phys. Lett. B](http://dx.doi.org/10.1016/j.physletb.2003.08.011) 570, 215 (2003); K. S. Babu and C. Macesanu, [Phys. Rev. D](http://dx.doi.org/10.1103/PhysRevD.72.115003) 72, 115003 [\(2005\)](http://dx.doi.org/10.1103/PhysRevD.72.115003); S. Bertolini, T. Schwetz, and M. Malinsky, [Phys.](http://dx.doi.org/10.1103/PhysRevD.73.115012) Rev. D 73[, 115012 \(2006\);](http://dx.doi.org/10.1103/PhysRevD.73.115012) A. S. Joshipura and K. M. Patel, [J. High Energy Phys. 09 \(2011\) 137.](http://dx.doi.org/10.1007/JHEP09(2011)137)
- [5] F.P. An et al. (DAYA-BAY Collaboration), [Phys. Rev.](http://dx.doi.org/10.1103/PhysRevLett.108.171803) Lett. **108**[, 171803 \(2012\)](http://dx.doi.org/10.1103/PhysRevLett.108.171803); K. Abe et al. (T2K Collaboration), Phys. Rev. Lett. 107[, 041801 \(2011\);](http://dx.doi.org/10.1103/PhysRevLett.107.041801) P. Adamson et al. (MINOS Collaboration), [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.107.181802) 107[, 181802 \(2011\);](http://dx.doi.org/10.1103/PhysRevLett.107.181802) H. De. Kerrect (Double CHOOZ Collaboration), in Proceedings of the LowNu Conference, Seoul, Korea, 2011 (unpublished).
- [6] K. S. Babu and R. N. Mohapatra, [arXiv:1203.5544](http://arXiv.org/abs/1203.5544) [Phys. Rev. D (to be published)].
- [7] C.S. Aulakh and A. Girdhar, [Nucl. Phys.](http://dx.doi.org/10.1016/j.nuclphysb.2005.01.008) B711, 275 [\(2005\)](http://dx.doi.org/10.1016/j.nuclphysb.2005.01.008); C. S. Aulakh and S. K. Garg, [arXiv:hep-ph/](http://arXiv.org/abs/hep-ph/0612021) [0612021.](http://arXiv.org/abs/hep-ph/0612021)
- [8] F. Vissani, *Phys. Rev. D* **52**[, 4245 \(1995\).](http://dx.doi.org/10.1103/PhysRevD.52.4245)
- [9] R. N. Mohapatra and M. K. Parida, [Phys. Rev. D](http://dx.doi.org/10.1103/PhysRevD.47.264) 47, 264 [\(1993\)](http://dx.doi.org/10.1103/PhysRevD.47.264); S. Bertolini, L. Di Luzio, and M. Malinsky, [Phys.](http://dx.doi.org/10.1103/PhysRevD.80.015013) Rev. D 80[, 015013 \(2009\)](http://dx.doi.org/10.1103/PhysRevD.80.015013).
- [10] S. Enomoto and N. Maekawa, *[Phys. Rev. D](http://dx.doi.org/10.1103/PhysRevD.84.096007)* **84**, 096007 [\(2011\)](http://dx.doi.org/10.1103/PhysRevD.84.096007); P.-H. Gu and U. Sarkar, [arXiv:1110.4581.](http://arXiv.org/abs/1110.4581)
- [11] The Early Universe, E. Kolb and M. Turner, Frontiers in Physics (Westview, New York, 1986).