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We provide a geometrical argument for the emergence of a Wess-Zumino-Witten (WZW) term in a

Fermi surface threaded by a Berry curvature. In the presence of external fields, the gauged WZW term

yields a chiral (triangle) anomaly for the fermionic current at the edge of the Fermi surface. The fermion

number is conserved, though, since Berry curvatures always occur in pairs with opposite (monopole)

charge. The anomalous vector and axial currents for a fermionic fluid at low temperature threaded by pairs

of Berry curvatures are discussed. The leading temperature correction to the chiral vortical effect in a

slowly rotating Fermi surface threaded by a Berry curvature may be tied to the gravitational anomaly.
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Introduction.—Chiral anomalies play a key role in
QCD at low energy where for instance the chiral triangle
anomaly causes the �0 ! �� decay. Chiral anomalies
have a geometrical origin that is concisely captured by
Wess-Zumino-Witten (WZW) terms [1,2]. Anomalies in
fermionic systems at finite density were noted in Ref. [3].
Similar anomalies have emerged in dense holography [4,5]
which have a general explanation from entropy constrained
hydrodynamics [6], and more generically WZW effective
actions with matter [7,8]. The role of the WZW term in
chiral fluids including the role of the gravitational anomaly,
was recently analyzed in Ref. [9]. Berry phases in fermi-
onic systems are intricatly related to WZW-like terms.
Pertinent examples can be found in the chiral bag models
of hadrons [10].

Recently, a triangle anomaly was argued to take place in
Fermi surfaces with Berry curvatures [11], a point of
relevance to Weyl semimetals [12] and possibly graphene
[13]. A careful but involved analysis of the phase space
structure of Fermi liquids in the presence of a Berry
curvature has revealed a triangle anomaly in the fermionic
current that tags on the monopole charge of the Berry
phase. Since Berry curvatures always occur in dual pairs,
charge conservation is of course garenteed. The interplay
between a Berry phase and the chiral anomaly in QCD was
originally noted in Ref. [14]. The relevance of the chiral
anomaly to condensed matter physics with numerous
applications to 3He-A was also emphasized in Ref. [15]
(and references therein).

In this Letter, we show that the triangle anomaly in the
fermionic current follows from a WZW-like contribution
of the Berry curvature after a homotopic extension of the
quasiparticle adiabatic momentum and a minimal Uð1Þ
gauging. As expected, the normalization of the WZW-
like action follows solely from geometry once the mono-
pole charge is given. The ensuing currents at the edge of
the Fermi surface are plagued by the chiral (triangle)
anomaly. At low temperature, a slowly rotating Fermi
surface threaded by Berry curvatures exhibit both chiral

magnetic and vortical effects in the presence of external
Uð1Þ fields [16]. The leading temperature correction to the
chiral vortical effect maybe traced back to the gravitational
anomaly [9,15,17].
Berry curvature.—The emergence of a Berry phase at

the Fermi surface results from the occurence of a level
crossing between a particle and a hole state. This crossing is
dynamical in origin and maybe due to an accidental zero in
the momentum dependent gap function for weakly coupled
BCS metals or some intricate dynamics in the particle level
dispersion law as in Weyl semimetals or graphene for in-
stance. The particles and holes (quasiparticles) near the zero
act as slow variables in the presence of an induced Berry
phase generated by the rest of the Fermi surface acting as fast
variables. Near the zero or crossing point, the fermion dis-
persion relation is linear causing the fermions to behave
nearly relativistically. As a result, the dynamics near the
Fermi surface is effectively 1þ 1 dimensional making the
setup ideal for the emergence of chiral anomalies and, poten-
tially, the general lore of anomalous bosonization.
For simplicity, consider a level crossing at the edge of a

Fermi surface with canonical degeneracy 2, making the
induced Berry curvature a monopole of charge g ¼ 1=2

(see below). If we denote by ~Að ~pÞ, the pertinent Berry
phase or curvature near such a zero or level crossing, then it
couples to a particle or a hole with (adiabatic) momentum
~pðtÞ through

S B ¼
Z

dt ~Að ~pÞ � _~p: (1)

Since the Berry curvature is monopolelike and Abelian, it
is threaded by a Dirac string and the action (1) in 0þ 1
dimensions is nonlocal. It can be made local by extending
it homotopically to 1þ 1 dimensions following the origi-
nal arguments in Ref. [2]. For that we define

~pðtÞ ! kFp̂ðt; sÞ (2)

with kF the Fermi momentum, p̂ðt; 0Þ ¼ ê some fixed unit
vector and p̂ðt; 1Þ ¼ p̂. The manifoldD ¼ S1 � ½0; 1� can
be regarded as the upper cup of S2 with �D its complement,
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i.e., S2 ¼ Dþ �D. While �0þ1ðS2Þ ¼ 0, �1þ1ðS2Þ ¼ Z.
The latter is characterized by the topological charge or
winding density

W ðp̂Þ ¼ 1

8�
�ij�abcp̂a@ip̂

b@jp̂
b (3)

with the labeling i, j ¼ 0, 5, and a, b, c ¼ 1, 2, 3, the
coordination x0 ¼ t and x5 ¼ s. Equation (3) carries unit
normalizationZ

S2
d2xWðp̂Þ ¼ 1

4�

Z
S2
p̂ � ðdp̂� dp̂Þ ¼ 1: (4)

The Berry curvature in (1) is a monopole flux

S B ¼
Z
C¼@D

~Að ~pÞ � d ~p �
Z
D
dAð ~pÞ (5)

with the form notation subsumed. A Berry curvature of unit
flux through the Fermi surface amounts to

Z
S2¼Dþ �D

dA ¼ g
Z
S2
p̂ � ðdp̂� dp̂Þ ¼ 2�; (6)

which is effectively a hedgehog monopole in momentum
space of charge g ¼ 1=2 centered in the Fermi sea.
Therefore, the nonlocal form (1) in 0þ 1 dimensions can
be rewritten in local form in 1þ 1 dimensions through

SB ¼ 4�g
Z
D
d2xWðp̂Þ

¼ g

2k3F

Z
D
d2x�ij�abcpa@ip

b@jp
b (7)

after relaxing the form notation. Equation (7) is the WZW
term for the Berry curvature of flux 1 or monopole charge
g ¼ 1=2 centered in a Fermi sphere of radius kF; it is also
well established in condensed matter [15,18,19].

A Berry curvature of flux k through the Fermi surface
amounts to a monopole of charge g ¼ k=2 centered in the
Fermi sphere, while a Berry curvature of flux �k amounts
to an antimonopole of charge g ¼ �k=2. A monopole will
cause the particle and hole excitations at the zero or level
crossing to be right-handed, say, while an antimonopole
will cause them to left-handed. The labelling right and left
is conventional. In materials level crossings occur always
in pairs making the net flux always zero.

Chiral anomaly.—To assess the effect of the Berry cur-
vature (7) on the transport of the fermion number current
around the zero or level crossing in the presence of external
electromagnetism and at the edge of the Fermi surface, we
need to gauge (7). For that we note that if we were to
formally extend

paðt; sÞ ! p�ðt; s; ~xÞ (8)

for the sake of the argument [we will revert to paðt; sÞ
shortly], which is seen to be valued in D� R3, then
(7) turns to a Chern Simons—like contribution in five
dimensions

S?B � N?SB ¼ g

2k3F

N?
V3

Z
D�R3

pðdpÞ2 (9)

for N? quasiparticles. Here N?=V3 ¼ n?kF and n? ¼
k2F=2�

2 denotes the fermion density at the Fermi surface
for a single fermion species. Near a zero or level crossing, the
quasiparticles contribute coherently to the Chern Simons—
like term, thus the multiplication by N?. Their number
density is given by the density n? at the Fermi surface.
It is now straightforward to gauge (9), say by minimal

substitution p ! pþ A. Thus, the gauged WZW term in
form notation is

S?B ¼ gn?
2k2F

Z
D�R3

ðpþ AÞ
�
dpþ 1

2
F

�
2
: (10)

We now revert to p� ! paðt; sÞ for our Berry curvature or
hedgehog monopole. F is the Uð1Þ field strength. From
(10) it follows that the Fermionic current is anomalous.
Indeed, in the presence of a Uð1Þ gauge field A, the
fermionic current carried by the particle and hole excita-
tions at the level crossing or zero can be thought of as either
right-handed (Berry curvature with net positive flux) or
left-handed (Berry curvature with net negative flux). Both
currents couple normally to the Uð1Þ gauge field through

S R;L ¼
Z
R4
JR;LA: (11)

The Noether construction A ! Aþ d� shows that

dJR ¼ gn?
2k2F

�
dpþ 1

2
F

�
2

(12)

is anomalous. A similar relation holds for JL with g ! �g.
In (12) p� � paðt; s ¼ 1Þ [after reverting to paðt; sÞ], and
its contribution has no support by the antisymmetric con-
traction. Thus

dJR ¼ gn?
8k2F

F2 � g

2�2
~E � ~B (13)

after using the explicit contribution of the single species
fermions at the Fermi surface. For the Berry curvature of
general charge g ¼ k=2 or k-fluxes through the Fermi
surface, this is the result established recently in Ref. [11]
using Fermi liquid theory and transport arguments and
earlier in Ref. [15] in the context of 3He-A.
Since at the zero or level crossing the particle-hole ex-

citations are effectively Weyl, (13) is the expected anomaly
for a free Weyl fermion in 1þ 3 dimensions. Note that the
features of the Fermi surface dropped out of (13) as expected
from geometry. Anomalies are infrared manifestations of
ultraviolet physics that are insensitive to matter [20].
In many ways, (13) carries the essentials of the anomaly

matching condition in matter whereby the infrared degrees
of freedom at the Fermi surface are mapped onto the
ultraviolet character of the chiral anomaly in the vaccum.
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It is worth noting that when the number of quasiparticles
in (9) encompasses all of the Fermi surface, thenN?=V3 ¼
ðn?kFÞ=3 is just the Fermi density, in which case

dJR ¼ gn?
24k2F

F2 � g

6�2
~E � ~B: (14)

Equations (13) and (14) are the covariant and consistent
form of the Abelian chiral anomaly, respectively, both of
which are known to follow from specific UV regulariza-
tions for fermions in the vacuum [21]. Here, they are
realized through a different counting of states either at
the surface (13) or through the bulk (14) of the Fermi
surface. Both may have a realization in materials differing
by the degree of coupling of the quasiparticles.

Anomalous fermionic fluid.—If we were to treat the
quasiparticle excitations at the Fermi surface as a fluid
with a (momentum-dependent) fluid velocity v� and a
chemical potential �R (following the right convention for
a zero or crossing with positive flux), then chiral magnetic
and vortical contributions would be expected.

In the presence of anomalies the chemical potentials are
defined using the conserved but gauge fixed right and
left currents. We note that the gauge fixing in the vector
current is redundant since it is conserved (see below).
In leading order they follow readily by the substitution
A ! Aþ�R;Lv in the WZW term or the anomaly contri-

bution [7]. Specifically, (13) now reads (for the right current)

djR ¼ g

16�2
ðFþ 2�RdvÞ2

¼ g

16�2
ðF2 þ 4�RFdvþ 4�2

RðdvÞ2Þ (15)

and jR ¼ nRv now the normal constitutive current with
quasiparticle density nR. Equation (15) can be reshuffled
in the form

d~jR � d

�
jR � g

4�2
ð�RFvþ�2

RvdvÞ
�
¼ g

16�2
F2:

(16)

Equation (16) shows that the constitutive but normal current
jR acquires an anomalous contribution, the sum of which
yields

~j R � jR � g

4�2
ð�RFvþ�2

RvdvÞ; (17)

which obeys the triangle or chiral anomaly on the Fermi
surface. Similar relations hold for the left current with

the substitution g ! �g. The vector current ~j ¼ ~jR þ ~jL
is anomaly free, while the axial current ~jA ¼ ~jR � ~jL is
anomalous.

The first anomalous contribution in (17) is the chiral
magnetic contribution while the second anomalous contri-
bution is the chiral vortical effect. For instance the spatial
vector and axial currents flowing through a rotating but
cold Fermi surface threaded by a dual pair of Berry curva-
tures read

Z dp̂

4�
~ji ¼ � g

2�2
ð�R ��LÞBi þ g

4�2
ð�2

R ��2
LÞ!i

Z dp̂

4�
~jiA ¼ � g

2�2
ð�R þ�LÞBi þ g

4�2
ð�2

R þ�2
LÞ!i

(18)

with ~! the external circular velocity. The emergence of a
current in the presence of a slowly rotating Fermi surface
was also noted in Refs. [22–24].
At low temperature the axial vortical effect is expected

to be shifted

�2
R;L ! �2

R;L þ ð�TÞ2
24

; (19)

while the vector vortical effect is not. The temperature
shift appears naturally in the context of a rotating super-
fluid 3He� A system at low temperature and reflects on
the generic character of the mixing between axial and
gravitational anomalies in gapless constitutive systems
[9,15,17]. A more microscopic description of the constit-
utive currents shows that the temperature shift follows
from the leading tadpole corrections as discussed in
Ref. [7] through thermal phonons at low temperature in
a superfluid state, whereby �2=F2 � ð�TÞ2=�2 with
F2 � n? at the Fermi surface.
Conclusions.—We have shown that the triangle anomaly

established recently in Ref. [11] follows from the pertinent
gauged WZW term associated to the Berry curvature in a
Fermi surface. This result was expected, as all anomalies
are of geometrical nature and insensitive to the details of
the underlying dynamics here taking place at the Fermi
surface. The origin of the Berry curvature in a Fermi
surface, while intricate dynamically, is manifested by
particle-hole crossing at specific points of the Fermi sur-
face. Near these points, the approximate quasiparticle
spectrum is effectively two-dimensional and relativistic.
In the presence of Uð1Þ gauge fields, the right and left

fermionic quasiparticle currents are anomalous with the
chiral or triangle anomaly being the lore. Our analysis
through (13) shows how the infrared degrees of freedom
at the Fermi surface are mapped onto the ultraviolet con-
tent of the chiral anomaly. This is an example of how the
anomaly matching condition operates around a Fermi sur-
face. This point is of interest to dense QCD at weak
coupling whereby Fermi surfaces are expected.
A rotating Fermi fluid threaded by Berry curvatures at

low temperature exhibits both chiral and vortical effects.
The leading temperature effects appear to be related to the
gravitational anomaly noted in Refs. [9,15,17] and, per-
haps, generic. These leading temperature effects are tad-
polelike and unambiguous in the anomalous superfluid or
effective Lagrangian analysis in Ref. [7]. They maybe
measurable through the axial vortical effect.
Finally, it would be interesting to explore the possible

occurrence of non-Abelian Berry curvatures in Fermi
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surfaces, whereby non-Abelian anomalies can be realized.
We recall that non-Abelian Berry phases emerge naturally
in chiral bag models where three quarks are (somehow)
trapped and contribute essentially to their quantumnumbers
[10]. Non-Abelianity requires additional internal degener-
acies on the particle and hole quasiparticles at the edge of
the Fermi surface with spin being an obvious candidate.
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