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The dynamical scaling of quantum critical systems in thermal equilibrium may be inherited in the

driven steady state, leading to universal out-of-equilibrium behavior. This attractive notion has been

demonstrated in just a few cases. We demonstrate how holography—a mapping between the quantum

critical system and a gravity dual—provides an illuminating perspective and new results. Nontrivial out-

of-equilibrium universality is particularly apparent in current noise, which is dual to Hawking radiation in

the gravitational system. We calculate this in a two-dimensional system driven by a strong in-plane

electric field and deduce a universal scaling function interpolating between previously established

equilibrium and far-from-equilibrium current noise. Since this applies at all fields, out-of-equilibrium

experiments no longer require very high fields for comparison with theory.
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Relatively few general principles are known that govern
the behavior of quantum systems driven out of equilibrium
[1–4]. Those discovered do not constrain the system as
tightly as those of equilibrium thermodynamics. For quan-
tum critical systems, there may be additional principles
leading to universal out-of-equilibrium behavior. Quantum
critical systems display dynamical scaling in thermal equi-
librium [5]. Since nonequilibrium steady states are largely
determined by dynamics, one might anticipate that this
scaling is inherited by the driven steady state. This has
been seen in a few cases [6–11]. However, analysis of
out-of-equilibrium behavior is fraught with conceptual
and calculational difficulties. New insights and approaches
are required.

Holography provides one such approach [12,13]. It
utilizes a mapping between gauge theory in d dimensions
and string theory in dþ 1 dimensions, the classical gravity
saddle point of the string theory corresponding to a
strongly correlated quantum state of the gauge theory. In
this way, holography encodes quantum many-body corre-
lations in a classical, gravitational metric, allowing com-
plementary physical insights and calculational tools to be
brought to bear [12–18].

Here, we apply the holographic technique to the study of
nonlinear current noise—dual to Hawking radiation—at a
two-dimensional z ¼ 1 quantum critical point driven by an
in-plane electric field. We find a noise power

Sj � 4�T� with �kBT� ¼ ½ð�kBTÞ4 þ @
4c4e2E2�1=4

(1)

interpolating between Johnson-Nyquist noise at low fields
and previous results at high fields [8]. While driven out-of-
equilibrium steady-state distributions are generally very
different from those in equilibrium, holography reveals

that the out-of-equilibrium fluctuations of a quantum criti-
cal system may be precisely thermal.
Our calculation is carried out in a probe-brane limit with

boundary conditions corresponding to the application of
the in-plane electric field [11]. This field induces a modi-
fied metric [19] on the probe brane with a horizon at
temperature T� [20]. We show explicitly that Hawking
radiation from the emergent horizon generates current
fluctuations in the boundary that are thermal at temperature
T� (see Fig. 1), a conclusion consistent with general gravi-
tational principles and with potentially profound implica-
tions for out-of-equilibrium quantum criticality.

FIG. 1 (color online). Sketch of the AdS geometry with bound-
ary current fluctuations: The AdS brane geometry is modified by
the application of an in-plane electric field at the boundary.
Hawking radiation from the modified horizon propagates to
the boundary where it induces current fluctuations. These
fluctuations satisfy an equilibrium like fluctuation dissipation
relation at a temperature T� ¼ ½T4 þ @

4c4e2E2=ð�kBÞ4�1=4, in-
terpolating between established low- and high-field limits.
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These results are compared to those for the bosonic
superconductor to insulator transition, embodied in the
Bose-Hubbard model. This is amongst the quantum critical
systems that we have under the best analytical control
[24,25], making it ideal to test new ideas and techniques.
Early work on out-of-equilibrium quantum criticality con-
sidered this system [7,8]. Pioneering holographic studies
have reproduced dualities of the equilibrium magnetother-
moelectric response [18,26] and the steady-state out-
of-equilibrium current [7,11]. These results are a useful
benchmark and demonstrate the utility of the holographic
approach.

We begin by outlining how the nonequilibrium steady-
state response and current noise are obtained in a
1=N-expansion of the Bose-Hubbard model. We follow
with a heuristic discussion of the holographic mapping
and how it can be applied to out-of-equilibrium steady
states using the probe brane limit. We pay particular atten-
tion to the similarities between the trick used in the 1=N
expansion and the probe brane limit. Next, we detail the
calculation on the gravity side and end with a critical
discussion of the results and their implications.

Out-of-equilibrium noise in the Bose-Hubbard model.—
The continuum field theory describing the two-
dimensional Bose-Hubbard model is essentially a Klein-
Gordon model with a�4 interaction, minimally coupled to
an in-plane electric field [24]. The Klein-Gordon field
supports normal modes of positive and negative charge.
Charge transport in this model can be described using a
Boltzmann equation for the population of positively and
negatively charged normal modes [25], controlling the
interaction within an � expansion. The presence of both
charges allows scattering to relax current even though it
conserves both energy and momentum. Formally, the
model has infinite thermal conductivity, �, at leading order
in � and finite electrical conductivity, �.

As the electric field is increased and the system driven
away from linear response, new processes become impor-
tant and account must be taken of heat flow. The strong
electric field produces pairs of positive and negative modes
from the vacuum by the Schwinger mechanism or Landau-
Zener tunneling [7]. At the same time, Joule heating pumps
energy into the system. In order to achieve a steady state,
there must be a heat sink. One way is to consider a finite
system so that excess heat and particles can be transported
to the boundaries. As emphasized by Tremblay [27], heat
transport requires gradients in free-energy density. If this
variation is to be small, and the response independent of
the size and geometry of the sample, there is a limit on
size. However, for particle-hole symmetric systems, the
Wiedemann-Franz law does not hold and thermal conduc-
tivity can be much larger (in appropriate units) than elec-
trical conductivity. In this case, a very small thermal
gradient is required to support the flow of heat to the
edge of the sample and maintain a steady state. Indeed,
for the Bose-Hubbard model, the leading thermal conduc-
tivity is infinite and the system size may be taken to infinity

provided that we take � to infinity first [26]. Both the 1=N
expansion and the probe brane calculation take advantage
of these arguments for the existence of a steady-state
out-of-equilibrium distribution and calculate the out-of-
equilibrium distribution directly for an infinite system.
In the 1=N-expansion [8], the electric field is coupled to

just one of the components of an OðNÞ vector field. The
N � 1 components that are not coupled to the electric field
effectively act as a critical bath for the field-coupled com-
ponent. This allows the steady-state out-of-equilibrium
conductivity to be calculated in a spatially uniform, infinite
system. A Boltzmann equation is developed for the field-
coupled component of the OðNÞ field. Integrating over
momentum, one recovers a Boltzmann equation for the
total current;

dj

dt
¼ aEðdþ1Þ=2 � b

ffiffiffiffi
E

p
j;

where the first term on the right-hand side has its origin in
Schwinger pair production and the second term describes
the decay of current carried by the field-coupled compo-
nent to the remaining N � 1 components. The constants a
and b characterize these two processes [28]. Integrating

this equation, one obtains a steady-state current j ¼ a
b E

d=2

giving a conductivity � ¼ a
b in two dimensions. Note that

in this 1=N treatment, the steady-state distribution is not
simply thermal, a point that we shall return to later.
The current noise is determined by developing a

Boltzmann-Langevin [29,30] description of fluctuations
in the distribution function. The underlying physical in-
sight is that the scattering processes may be treated as
independent and so obey Poisson statistics. Fluctuations
in the distribution function may then be approximated
by adding Gaussian noise to the Boltzmann equation
with variance proportional to the mean scattering rate.
Integrating this Boltzmann-Langevin equation results in
the following equation for the current fluctuations:

d�j

dt
¼ �b

ffiffiffiffi
E

p
�jþ �;

h�ðtÞ�ðt0Þi ¼ cEðdþ1Þ=2�ðt� t0Þ:
Integrating this equation and considering the behavior on
long time scales, one obtains the large-E (zero tempera-
ture) limit of the nonequilibrium current noise given by
Eq. (1).
Heuristic picture of the AdS realization.—As discussed

above, holography uses a mapping between a critical gauge
theory in d dimensions and a string theory in dþ 1. The
gauge theory may be thought of as describing or living on
the boundary of the gravitational system with the extra
dimension playing the role of a renormalization group
scale. The classical gravity saddle point of the string theory
encodes a strongly correlated quantum state of the gauge
theory. In particular, the interactions and scaling are em-
bodied in the metric. The horizon in the presence of a black
hole has particular importance in what follows. As usual,

PRL 109, 091601 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

31 AUGUST 2012

091601-2



its area determines the entropy of the black hole, whose
temperature is given by the surface gravity. This tempera-
ture has the same interpretation in both the gauge theory
and gravity.

We model nonlinear transport using the D3N=D5M
brane intersection [31,32]: we study the dynamics of M
D5 branes in the background of ND3 branes in the probe
brane limit N � M. The specific configuration is summa-
rized in Table I. The D3 branes lead to the formation of a
horizon in the background metric modeling the effect of a
thermal bath. Nonlinear transport is studied through the
dynamics of gauge fields on the D5 brane with boundary
conditions corresponding to the application of an in-plane
electric field. This permits us to study out-of-equilibrium
steady states in a very similar way to the 1=N trick used in
the condensed matter calculations of current noise. Since
N � M, gauge fields on the D5 brane do not modify the
metric. Just as the single component of the OðNÞ field
coupled to the electric field does not modify the distribu-
tion of the N � 1 modes corresponding to the critical bath
from the condensed matter point of view.

The application of the electric field on the boundary
leads to a crucial modification of the metric induced on
theD5 brane. A new horizon appears in this reduced metric
with an area that corresponds to the effective temperature
T� in Eq. (1). A major result of this is that the conductivity
and current fluctuations are related in a way that mimics
the equilibrium fluctuation-dissipation relation at the
effective temperature T�. Such a relation appears to be
inevitable in the gravity dual. As we discuss below, the
consequences of this are potentially profound.

Details of the AdS calculation.—Our calculation, in-
volves solving the equations of motion for gauge fields
on theD5 brane. The steady-state solution corresponds to a
previous calculation that allows determination of the out-
of-equilibrium conductivity [11]. We explicitly propagate
thermal fluctuations from the horizon on theD5 brane to its
boundary and derive a Langevin equation for gauge fluc-
tuations and hence current fluctuations on the boundary.
The dynamics of the D3N=D5M brane intersection is cap-
tured by the action

SD5
¼ �N 5

Z
d6�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�detðgind þ FÞ

q
þ SWZ; (2)

where gind is the metric induced on the D5 brane, and F is
the gauge field strength on the brane in string units. We do
not specify the Wess-Zumino term SWZ further as it does
not contribute to the configurations that we study below.
The normalization N 5 ¼ MT5 where T5 is the usual
D5-brane tension. We study this system in the background
of the nonextremal D3 brane metric, which we take to be

Gmndx
mdxn ¼ u2

R2
½�fðuÞdt2 þ dx2� þ R2du2

fðuÞu2 þ R2d�2
5

(3)

with fðuÞ ¼ 1� u4
h

u4
, and d�2

5 is the metric on a round five

sphere. By studying the regularity of the Euclidean geome-
try at uh or otherwise, one sees that the background
geometry (the bath) has a temperature T ¼ uh=ð�R2Þ.
Applying an external electric field in the x direction is

accomplished by choosing the gauge potential

A ¼ ½� ~Et� AxðuÞ�dx; (4)

where ~E is a dimensionless electric field. The geometry of
the brane is obtained by solving the equations resulting
from the action (2). We choose the static gauge on the
brane. The degrees of freedom are a single angle 	ðuÞ
describing the position of the S2 on the S5 and the radially
dependent function AxðuÞ. An important simplification
allows us to set 	ðuÞ ¼ 0, corresponding to the case of
coupling massless charged degrees of freedom to the field.
The field AxðuÞ is a cyclic coordinate and hence has first

integral

A0
xðuÞ ¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Guuð ~E2 þGttGxxÞ
GttðC2 þGyyGttÞ

vuut ; (5)

where C is an integration constant related to the current
C ¼ j=N 5. Requiring that the expression be real for all
values of u demands [33] that the denominator and nu-
merator cross zero at the same point u :¼ u�. This deter-
mines u4� ¼ u4h þ ~E2R4. The special point u� on the brane

coincides with the horizon of the background black hole iff
~E ¼ 0. This matching procedure also relates the current to
the applied field, yielding (see Ref. [11])

j ¼ N 5
~E ¼: �ð2þ1Þ ~E; (6)

i.e., nonlinear conductivity in d ¼ 3 is a constant [6,7].
Brane horizon, effective temperature.—This result, and

its higher-dimensional generalizations, can further be in-
terpreted in terms of an effective geometry on the brane,
seen by the fluctuations of the gauge field. Let us perturb
A ! Aþ a, where

a ¼ akðu; tÞdxþ a?ðu; tÞdyþ atðu; tÞdt: (7)

Then the quadratic fluctuation action becomes

TABLE I. The D3N=D5M brane intersection. We label direc-
tions occupied by the branes by � and directions in which they
are localized by �. The field-theory directions are x0, x1, x2 � t,
x, y. In addition the D5wraps the RG direction x4 � u as well as
an S2 	 S5, parametrized by two angles x5, x6 � 	1, �1. This
system realizes an out-of-equilibrium steady state in 2þ 1
dimensions.

0 1 2 3 4 5 6 7 8 9

D3 � � � � � � � � � �
D5 � � � � � � � � � �
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Sð2Þ ¼ ~N 5

Z
dudt

ffiffiffiffiffiffiffiffi�

p


abð@aak@bak þ ZðuÞ?@aak@bak

þ ZtðuÞ@aat@batÞ; (8)

where ~N 5 results from integrating out the angular direc-
tions, and for the case of no spatial dependence also the x, y
directions. ZIðuÞ are conformal rescaling factors whose
exact expressions we do not need. Upon plugging in the
conductivity (6) we find thatZ?ðuÞ ¼ 1. By choosing a new
time variable � we can put the �, u part into diagonal form

ds2 ¼ �u4 � u4�
u2R2

d�2 þ u2R2du2

u4 � u4�
; (9)

where � ¼ tþ fðuÞ with

fðuÞ ¼ 1

2

�
1

uh

�
arctan

u

uh
� arctanh

u

uh

�

þ 1

u�

�
arctan

u

u�
� arctanh

u

u�

��
; (10)

which is akin to the trailing string solution. The fluctuations
for u>u� are causally disconnected from the region u<u�,
so that u� has precisely the form of a black hole horizon.
Euclidean regularity of this horizon imposes the temperature

�T� ¼ u�
R2

¼ ½ ~E2R�4 þ ð�TÞ4�1=4: (11)

Restoring units [34] and assigning charge e ¼ 1=
ffiffiffiffi
�

p
to the

fundamental charge carriers, as in [11,33], this may be ex-
pressed in terms of universal field theory quantities as in
Eq. (1). This effective temperature interpolates precisely

between the two limits T��
ffiffiffiffi
E

p
and T��T which emerged

from earlier calculations near the superconductor-insulator

transition. Furthermore, the spatial fluctuations a ¼ ðak; a?Þ
decouple from at so that we are free to consider them sepa-
rately. The fluctuations of interest satisfy the bulk equation

w2

z2fðzÞ ai þ @zðz2fðzÞ@zaiÞ ¼ 0; (12)

where we have changed to the dimensionless variable z ¼
u=u� and fðzÞ¼1�z�4. The quantity w :¼!=ð�T�Þ is a
dimensionless measure of frequency. We can now study
the noise of the current j, dual to the bulk gauge field a, by
following the prescription of [35] to calculate the Schwinger-
Keldysh two-time correlators of the boundary field theory.
The current fluctuations satisfy a Langevin equation of
the form

dj

dt
þ

Z

ðt; t0Þjðt0Þdt0 ¼ �ðtÞ; (13)

where we can extract the memory kernel 
ðt; t0Þ ¼ GRðt; t0Þ
and noise �ðtÞ using holography, in analogy to holographic
Brownian motion of heavy quarks [36,37].

By carefully studying the analyticity properties of posi-
tive frequency modes on the Kruskal plane as we cross the
horizon [35], we find the noise correlation

h�ið!Þ�jð�!Þi¼Gij
symð!Þ¼�ð1þ2n�ÞImGij

R ð!Þ; (14)

where Gij
symð!Þ is the symmetric or Keldysh correlator of

the current ji in the Schwinger-Keldysh formalism and

Gij
R ð!Þ is the retarded correlator. We have the effective

thermal factor n� ¼ 1=ðexpð!=T�Þ � 1Þ. This gives us a
current noise

Sj ¼ �
Z 1

�1
d!dtei!t cothð!=2T�ÞImhjð!Þ 
 jð�!ÞiR

¼ �T� lim
!!0

2

!
ImTrGRð!Þ ¼ T��ðT=T�Þ; (15)

where the final equality follows from a scaling analysis of
Eq. (12). In fact, we can solve Eq. (12) exactly. The
solution with ingoing boundary conditions at the horizon
for both components of a is

a iðzÞ ¼ ci

�
z� 1

zþ 1

�ð�i=4Þ
exp

�
� iw

2
arctanz

�
; (16)

for constants ci. From this we deduce the exact retarded
Green function

Gij
R ð!Þ ¼ �i�ð2þ1Þw�ij; (17)

where �ð2þ1Þ is the nonequilibrium conductivity deter-

mined above. In turn this gives the current noise power

Sj ¼ 4�ð2þ1ÞT�: (18)

The noise is related to the conductivity by an equilibrium-
like fluctuation dissipation or Einstein relation at the ef-
fective temperature; an exact interpolation between the
previously known results of [8].
Discussion.—Hawking radiation is dual to quantum

critical current noise under the holographic mapping. We
have used this mapping in the probe brane limit to study
nonlinear current noise. The crucial feature of this analysis
is the effect of the electric field on the metric induced on
the probe brane; this metric is modified such that a new
horizon appears with which we may associate a tempera-
ture T� [38]. This horizon describes the combined effects
of thermal fluctuations from the equilibrium bath and pair
production by the Schwinger mechanism. By considering
the propagation of fluctuations from this horizon to the
boundary, we have shown that the fluctuations on the
boundary—and hence of the gauge theory—obey an equi-
librium like fluctuation dissipation or Einstein relation at
the effective temperature T�.
In general, an out-of-equilibrium steady state is not

expected to obey an equilibrium like fluctuation dissipation
relation. The present holographic analysis, suggests that
this may nevertheless be the case in quantum critical
systems with a holographic dual. This rather elegant result
emerges as a consequence of some very general properties
of gravitational metrics. It would be very informative to
recast it as a principle directly applicable to the condensed
matter system. This principle is subtly hidden; it does not
correspond to a thermal distribution of the Klein-Gordon
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normal modes, since this would not carry a current. The
distribution of fluctuations is a combined feature of the
nonequilibrium distribution and the scattering integral.
Nevertheless, thermal distributions of fluctuations in the
presence of profoundly nonequilibrium distributions have
been seen before in quantum critical systems in the low
frequency limit [39,40], even when they do not posses a
known holographic dual. One might then speculate that
if this principle can be identified, it will have broader
application.

It would seem that for a quantum critical system with a
gravity dual, we may always consider nonlinear response
in the probe brane limit. Presumably, the driving field will
always modify the induced metric in such a way that a new
horizon is formed with which we may associate an effec-
tive temperature. As we have taken pains to demonstrate
here, a fluctuation-dissipation relation at this effective
temperature will result. What are the limitations of this
picture? We have used arguments from condensed matter
to motivate the existence of a nonequilibrium steady state
in the correct limit of thermal conductivity and system
size. These conditions are not easily met in practice
and certainly constrain the applicability of our results.
Nevertheless, where they are met, it is unlikely that a
gauge-gravity dual that applies in equilibrium would be
invalidated by simply tuning up the strength of the probe
field. One way to negotiate the constraints of system size
and thermal conductivity, and an interesting avenue for
further study, might be to study the approach to the steady
state distribution in a quench after the sudden change of
electric field similar to the mass and coupling quenches of
Ref. [41].
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