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M. Kolář,1 D. Gelbwaser-Klimovsky,2 R. Alicki,2,3 and G. Kurizki2
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A minimal model of a quantum refrigerator, i.e., a periodically phase-flipped two-level system

permanently coupled to a finite-capacity bath (cold bath) and an infinite heat dump (hot bath), is

introduced and used to investigate the cooling of the cold bath towards absolute zero (T ¼ 0).

Remarkably, the temperature scaling of the cold-bath cooling rate reveals that it does not vanish as

T ! 0 for certain realistic quantized baths, e.g., phonons in strongly disordered media (fractons) or

quantized spin waves in ferromagnets (magnons). This result challenges Nernst’s third-law formulation

known as the unattainability principle.
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Introduction.—One of the generally unsettled funda-
mental problems of thermodynamics is the nature of the
ultimate limitations on cooling to absolute zero, T ¼ 0.
Attaining T ¼ 0 in a finite number of steps, or, more
generally, in finite time, is prohibited by Nernst’s unattain-
ability principle which is the dynamical formulation of the
third law of thermodynamics [1–3]. However, the univer-
sality of this principle has been postulated rather than
proven. It is also debatable whether this formulation is
always equivalent to Nernst’s heat theorem, whereby the
entropy vanishes at T ¼ 0. Do both formulations of the
third law hold for all quantum scenarios? The investigation
of this open fundamental problem, pertaining to quantum
refrigerator (QR) schemes [4–8], raises several principal
questions: (i) How does the cooling rate scale with the bath
temperature and does it necessarily vanish as T ! 0?
(ii) Does a QR differ from its classical counterpart regard-
ing compliance with the third law and to what extent is
such compliance model dependent? Answers to these ques-
tions are important not only to the understanding of the
foundations of quantum thermodynamics [9], but also to
the design of novel QR schemes compatible with the needs
of quantum nanotechnologies that require compact (nano-
size) coolers capable of ultrafast cooling [10].

Here, we propose and explore the simplest QR design
thus far that allows us to address the fundamental issues
raised above. The working medium is a single two-level
system (qubit), permanently (rather than intermittently, as
is done in traditional cycles [4]) coupled to a finite-capacity
bath to be cooled and to another, much larger and hotter,
heat dump. The pumping operation consists of fast
modulation of the qubit energy by means of periodic
�-flips of the qubit phase. We find that this QR can cool
down a finite-capacity (yet macroscopic and spectrally-
continuous) bath only if the modulation-period is within
the bath-memory (non-Markovian) time. Hence, the
cold-bath spectrum is crucial in determining the cooling

condition and rate. Our most striking finding is that for
certain experimentally realizable baths, such as quantized
spin-waves in ferromagnets (magnons) [11] or acoustic
phonons in strongly disordered media (fractons) [12], the
cooling rate remains finite as T ! 0, in apparent violation
of the dynamical formulation of the third law.
Model and analysis.—A control qubit is weakly coupled

to two baths via the system-bath interaction Hamiltionan:
HSB ¼ �xðBH þ BCÞ, where �x is the spinor x component,
BC is the operator of a finite cold bath (C) which wewish to
refrigerate, and BH that of a much larger hot bath (H) that
remains nearly unchanged. The qubit energy is periodi-
cally modulated by an external field �ðtÞ via the
Hamiltonian Hext ¼ 1

2�z�ðtÞ. An illustration (Fig. 1-inset)

is that of a charged quantum particle in a double-well
potential that is periodically phase-flipped by off-resonant
pulses and is coupled to a spatially-confined (macroscopic)
C-bath to be cooled, as well as to a nearly-infinite H
environment into which the heat is dumped. This scheme
bears analogy to radiative (sideband) cooling in solids and
molecules [13], if one visualizes the red- and blue- shifted
qubit frequencies as Stokes and anti-Stokes lines,
respectively.
Our analysis reveals the crucial role of the quantized

characteristics of system-bath coupling in determining the
attainability of T ! 0. By contrast, the results are insensi-
tive to the QR scheme chosen (see Discussion).
The general condition for steady-state refrigeration,

under periodic, off-resonant, modulation, is positive heat
current from C to H via the qubit. The sign and magnitude
of the current is determined by the steady-state solution of
a non-Markovian master equation (ME) for the qubit den-
sity matrix [14]. TheME, which is accurate to second order
in the system-bath coupling, allows for time-dependent
modulation of the system that is much faster than the
bath-memory time tc. It is valid at any T, as shown both
theoretically [14] and experimentally [15,16]. Deviations
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of the evolution (Supplemental Material A, [17]) from that
described by the non-Markovian ME include system-bath
entanglement (correlations) effects that can be compen-
sated by readjusting the qubit excitation, as well as bath
dynamics effects (violation of the Born approximation
whereby the bath is constantly in a thermal state) [18].
Yet such deviations are of fourth-order in the system-bath
coupling and thus negligible for weak coupling. The cool-
ing of a finite-capacity bath is the result of infinitesimal
temperature changes over many modulation cycles, con-
sistently with the Born approximation underlying the ME.
Since the Born approximation is the more accurate the
larger the bath [19], we assume that the finite-capacity
bath is macroscopic and has a continuous spectrum, which
does not exhibit mode discreteness or recurrences that may
otherwise invalidate this approximation and bath thermal-
ization altogether [19].

Only the diagonal elements.—of the qubit’s density
matrix �S (energy-state populations) play a part here,
although the ME also allows for coherences (off-diagonal
elements) [14], but these are absent at t ¼ 0 (starting at
equilibrium) and remain so under the modulation. The
quantumness of the ME, even when it is diagonal in
the energy basis, is embodied by the qubit interlevel
transition rate and their non-Markovian time-dependence
(Supplemental Material B, [17]). Periodic phase shifts of

the qubit at intervals � dynamically control its coupling to
the baths and the resulting transition rates. When � is
comparable to the bath memory-time tc, these phase shifts
modify the detailed balance of the transition rates and
thereby either heat or cool the qubit depending on �
[16,18]. In what follows, we analyze the steady state and
the slow changes of the bath temperature as a result of
these periodic perturbations.
Under weak-coupling conditions, the qubit evolution

caused by the baths is much slower than �� tc. Hence,
in steady state, we can use time-averaged level populations
and transition rates between the periodically-perturbed
qubit levels (Supplemental Material B, [17]). These time-
averaged (steady-state) equations can be recast, upon in-
troducing the polarization of the qubit S � ð�ee � �ggÞ=2,
into

_�S ¼ �½ �Rg þ �Re� �Sþ
�Rg � �Re

2
; (1)

Here, the jei ! jgi averaged transition rate from the ex-
cited (e) to the ground (g) state is �Re and its jgi ! jei
counterpart is �Rg. The averaged transition rates for t � �

are found, upon expanding the qubit energy under periodic
frequency modulation �ðtÞ into the harmonic (Floquet)
series (Supplemental Material B, [17], [20])

�ReðgÞ � 2�
X
m

PmGT½�ð!0 þm�Þ�; Pm ¼ j"mj2;

"m ¼ 1

�

Z 0

�
ei
R

t

0
ð�ðt0Þ�!0Þdt0eim�tdt; (2)

Here m are all (positive and negative) integers, Pm are the
probabilities of shifting GTð!Þ by m�, � ¼ 2�

� , from the

qubit average frequency!0, GTð!Þ being the temperature-
dependent bath-coupling spectrum, i.e., the Fourier trans-

form of the bath autocorrelation function: GTð!Þ ¼Rþ1
�1 ei!thBðtÞBð0Þidt ¼ e!=kBTGTð�!Þ. For a bosonic

bath:

GTð!Þ ¼ G0ð!Þðnð!Þ þ 1Þ;
G0ð!Þ ¼ jgð!Þj2�ð!Þ;
nð!Þ ¼ 1

e!=T � 1
;

(3)

gð!Þ being the system-bath coupling, �ð!Þ the bath -mode
density and nð!Þ the !-mode thermal occupancy. These
expressions are also obtainable by Floquet (harmonic)
expansion of the periodically-driven Markovian
(Lindblad) Liouvillian [20,21].
In the presence of hot (H) and cold (C) baths, under the

assumption of a qubit weakly coupled to both baths, the
transition rates are split into additive harmonic contribu-

tions: ReðgÞ �
P

mðRCðmÞ
eðgÞ þ RHðmÞ

eðgÞ Þ. Hence, Eq. (1) is also

split into (Supplemental Material B, [17]) _�S ¼
P

mð _
SCm þ _

SHmÞ, where
_

SCðHÞ
m is them-harmonic polarization

flow caused by the cold (hot) bath only. The averaged heat

FIG. 1 (color online). Main panel: Schematic depiction of the
required bath spectra and the qubit frequency shifts due to
periodic phase flips. Inset: Schematic realization of the modu-
lated qubit and its coupling to the baths.
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flow, _�Q, through the qubit is correspondingly divided into
the C and H bath contributions. The steady-state Eq. (1)
then gives rise to

JCðHÞ ¼ _�QCðHÞ ¼
X
m

ð!0 þm�Þ _
SCðHÞ
m (4)

which is the sum of rates of heat-exchange with the
respective baths via !0 þm� quanta. Positive JC implies
refrigeration, i.e., heat flow from the cold bath to the hot
bath via the modulated qubit.

It is advantageous to use periodic, alternating, �-phase
shifts (phase flips) as they give rise, to leading order, to two
symmetrically opposite frequency shifts of GT at !0 � �.
Then, by the Floquet expansion we obtain the probability
distribution wherein P0 ¼ 0 and P�1 � ð2=�Þ2 are the
leading terms [14,22].

Let us choose sufficiently large �, of the order of the
spectral width � ¼ 1=tc, which is the inverse memory time
of the cold bath, such that at ! ’ !0 þ� the qubit is
coupled only to the hot bath, while at ! ’ !0 �� it is
coupled to both the cold and the hot baths. More precisely,
we require that

GTð!0 þ �Þ � GH
T ð!0 þ �Þ � GC

T ð!0 þ�Þ;
GH

T ð!0 þ �Þ � GH
T ð!0 � �Þ; GC

T ð!0 ��Þ
(5)

whereGCðHÞ
T ð!Þ is the respective temperature-dependent

bath-coupling spectrum. This requirement can be satisfied
if the cold bath (C) is spectrally localized with upper cutoff
!cut <!0 þ�. By contrast, for the hot bath (H), the
required rise of GH

T with ! is obtained for most common
bath spectra, provided the cutoff of GH

T ð!Þ is much higher
than !cut of G

C
T ð!Þ: e.g., for phonons in bulk media or

photons in open space, GH
T ð!Þ / !3 satisfies Eq. (5).

Under the conditions of Eq. (5) we find that the steady-
state heat current fromC toH is (Supplemental Material B,
[17])

JC ¼ ð!0 � �Þ _
SCS

’ ð!0 ��ÞG
C
0 ð!0 � �Þ½nCð!0 � �Þ � nHð!0 þ �Þ�

½2nHð!0 þ�Þ þ 1� :

(6)

The balance of JC and JH (cold and hot) currents (4) obeys
the second law [2,23]: It can be verified that the entropy

production rate dS
dt satisfies: dS

dt � ðJCTC
þ JH

TH
Þ � 0 for any

initial state.
From Eq. (6), the heat pump (QR) condition JC > 0

amounts to

nCð!0 � �Þ> nHð!0 þ �Þ , !0 þ �

TH

>
!0 ��

TC

: (7)

An analogous relation holds if nCðHÞð!Þ are Boltzmann
rather than Bose factors (occupancies).

Equation (7) reveals the crux of the heat pumping (QR)
effect: although by definition nCð!0Þ< nHð!0Þ, heat can
flow from the cold to the hot bath if the C-bath thermal
occupancy at !0 �� is higher than that of the H bath at
! ’ !0 þ�. If � is too small for Eq. (7) to hold, we
recover the natural heat-flow direction H ! S ! C at
steady-state. In addition, Eq. (5) implies that the heat
pump requires the qubit to be simultaneously coupled to
the C and H baths at !0 �� and !0 þ �, respectively.
Cooling rate scaling with temperature.—In what follows,

we investigate the QR action (heat pumping from C to H)
under the assumptions that the hot bath is practically infinite;
hence, TH ¼ const, whereas the macroscopic cold bath has
finite heat capacity, cV <1, resulting in slow evolution of
TCðtÞ under the QR action. To estimate this evolution we use
the standard thermodynamic definition [24]

cV
dTCðtÞ
dt

¼ JC ¼ _�QC (8)

which presumes that TC is well-defined at all t (since the
bath has a continuous spectrum and is large enough to
thermalize at finite times).
In order to infer the temperature dependence of the

cooling rate dTC

dt we shall examine the scaling of cV and

JC with TC: (a) The constant-volume heat capacity of the
cold-bath, cV , depends on the dimensionality of the bo-
sonic bath. If �ð!Þ ’ !d�1 is the d-dimensional density of
modes and TC 	 !cut (kB ¼ @ ¼ 1), then

lim
TC!0

cV ¼ d

dT

hHBi
V

��������TC

’ d

dT

Z
d!!�ð!ÞðnCð!Þ þ 1Þ

��������TC

�Td
C: (9)

(b) The scaling of the cold-bath heat current, JC, in
Eq. (7) can be deduced if we maximize the heat flow [25]
with respect to � (our control parameter). This gives the
dependence of !0 � � ’ TC [7,26]. Hence, to maintain the
maximum heat flow, we have to slowly increase�with time,
so as to approach TC ! 0. The closer to TC ! 0, the lower
is !0 � �; hence, the steady-state dynamics (7) and its
slow change (8) become increasingly more accurate.
Correspondingly, we parametrize JC in Eq. (6) using
Eq. (3) and assuming the low-frequency range of the cold
bath 0 
 ! ¼ !0 � � 	 !cut: lim!!0jgð!Þj2 / !�,
�ð!Þ � !d�1. Here, jgð!Þj2 is the �-dependent system
coupling to the bosonic bath (discussed below). The heat
current,maximized for!0 �� � TC, then obeys the scaling

JCðTCÞ / �T�þd
C : (10)

(c) Upon substituting Eqs. (9) and (10) in Eq. (8) we
observe that the Td

C scaling of cV is canceled by a similar

scaling of the density of modes in Eq. (10). The resulting
scaling yields

dTC=dt ¼ �AT�
C: (11)
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Here the constant A / 1=V: the larger the bath the slower
its cooling.

Remarkably, the dTC

dt scaling only depends on the �th

scaling power of the system-bath coupling strength
jgð!Þj2. For different � the time dependence of TC, starting
from the same TCð0Þ, is plotted in Fig. 2. For � ¼ 1
we have exponentially slow convergence to TC ! 0, con-
forming to the third law. Yet, strikingly, for 0 
 � < 1,
TCðtÞ ! 0 at finite time, thus violating the accepted dy-
namical formulation of the third law [1–3], if the
frequency-dependent coupling jgð!Þj2 is sublinear in !.

In what follows, we examine the possibility of such
scaling for different bosonic baths. To this end, consider
a qubit immersed in a periodic medium, whose local
displacement is a linear combination of normal-mode cre-
ation and annihilation operators (bath excitations or deex-

citations) B̂ð ~xÞ ¼ 1ffiffiffi
V

p P
~k

1ffiffiffiffiffiffiffiffi
!ð ~kÞ

p ð�~kð ~xÞayðkÞ þ ðH:c:Þ. The
normal-mode functions are labeled by the wave vectors k
that belong to a reciprocal lattice bounded by the Debye
cutoff (!ðkÞ 
 !cut ¼ !D). The couplings of a charged or
dipolar system to bath excitations or deexcitations are to
leading order determined by the gradient of the displace-
ment operator

rB̂ð ~xÞ ¼ �iffiffiffiffi
V

p X
~k

1ffiffiffiffiffiffiffiffiffiffiffi
!ð ~kÞ

q ðr�~kð ~xÞayð ~kÞ � H:c:Þ: (12)

When �~kð ~xÞ ¼ e�i ~k� ~x the corresponding coupling con-

stant scales as jgð!ð ~kÞÞj � ~kffiffiffiffiffiffiffiffi
!ð ~kÞ

p . We can discern three

generic types of scaling of the coupling constant: (i) For

acoustic phonons!ð ~kÞ ’ vj ~kj, where v is a sound velocity
and the coupling strength satisfies jgð!Þj2 �!, i.e., � ¼
1. Therefore, acoustic phonons used as a cold bath do not
violate the dynamical third-law formulation: the optimal
cooling to zero temperature is exponential in time.

(ii) Amorphous (glass) materials may exhibit effects of
fractal disorder. These effects imply different scaling of the
displacement of the mode function �~kð ~xÞ, jr�~kð ~xÞj �
!�j�~kð ~xÞj: normal phonons are replaced by fractons for

which � takes fractional values. In particular, for some

materials � < 1 [12]. Hence, for a cold bath composed of
such fractons the violation of the third law is expected.
(iii) Another system which leads to a violation of the

third law is the magnon (spin-wave) bath in a ferromag-
netic spin lattice with nearest-neighbor interactions, below
the critical temperature. The Holstein-Primakoff transfor-

mation of the jth spin Pauli matrix [11], Sþj ¼
Sjx þ iSjy ¼ ð2SÞ1=2ð1� ayj aj=2SÞ1=2aj to boson annihi-

lation and creation operators aj, a
y
j , allows us to represent

the system as a set of interacting harmonic oscillators.
Introducing the collective spin-wave (magnon) variables

að ~kÞ, ayð ~kÞ satisfying aj ¼ 1ffiffiffi
N

p P
~ke

�i ~k� ~xjað ~kÞ, we can

rewrite its Hamiltonian in the form H0 ¼P
~k!ð ~kÞayð ~kÞað ~kÞ þ higher-order terms. At low tempera-

tures the nonlinearity in the Holstein-Primakoff transfor-
mation can be neglected and the system becomes
equivalent to a bosonic system governed by the
Hamiltonian H0, whereby the dispersion law is quadratic
in the low-frequency region, !ðkÞ � ðjkj2 þ constantÞ.
The local spin variable aj can then be directly coupled to

the qubit by a dipole-dipole (spin-spin) interaction.
Hence, the main difference between the dipolar coupling
to acoustic phonons and magnons is the absence of the

dispersive-coupling coefficient
~kffiffiffiffiffiffiffiffi
!ð ~kÞ

p for the latter.

Therefore, the coupling strength to magnons satisfies
jgð!Þj2 � 1 (� ¼ 0), which implies the violation of the
third law for magnons.
Discussion.—We have analyzed the cooling process of a

bosonic bath towards the absolute zero using a new mini-
mal model of a quantum refrigerator: a single two-level
system (qubit) permanently coupled to a spectrally re-
stricted cold bath with finite heat capacity and a hot bath
with infinite heat capacity has been shown to act as a heat
pump, under appropriate modulation. The heat flow is
proportional to the population-difference of a pair of op-
positely shifted bath modes that are selected by the qubit
modulation (phase-flip) rate, analogously to sideband cool-
ing [13]. The attainable cooling rate challenges the third
law of thermodynamics, in the sense that arbitrarily low
temperature of the cold bath may be reached in finite time
by the heat pump for certain quantized cold-bath spectra:
e.g., magnon and fracton baths.
In solid-state ferromagnets or glasses, interactions

of control qubits with other baths unaccounted by the
model, as well as tiny deviations from the predicted
weak-coupling, steady-state dynamics (discussed in the
Supplemental Material A,B [17]) may restore the third
law. Nevertheless, surprisingly fast cooling (� < 1) may
still be observed down to some (material-dependent) tem-
perature. It would be preferable to demonstrate this effect
for quantum dots coupled to controllable baths composed
of nuclear spins in solids [27] or for atomic dipoles in
optical lattices [28]: in both cases the systems are highly
shielded from other baths, while the lattices can be

FIG. 2 (color online). TC change with time (cooling) for three
different system-bath coupling-strength dispersion laws: � ¼ 1
(acoustic phonons), � ¼ 3=4 (fractons), � ¼ 0 (magnons).
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engineered to conform to the nearest-neighbor ferromag-
netic model that engenders magnons.

This study of the compliance with the third law for
quantized non-Markovian baths indicates that the tempera-
ture scaling of the cooling rate is not specific to the chosen
QR model; it is similar to the scaling obtained for the very
different noise -driven QR [26]. Namely, the scaling is not
sensitive to the form of driving, nor to the method of
treating the steady-state dynamics. Hence, the dependence
of the scaling on the system-bath coupling dispersion is
general. It provides new insights into the bounds of bath
cooling in quantum thermodynamics. It shows that
Nernst’s principle of unattainability of the absolute zero
in finite time [1–3] may fail and is not always equivalent to
Nernst’s heat theorem (see Introduction): the latter holds
true since a bosonic bath has a unique ground state whose
entropy must vanish.
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