
PT-Symmetric Quantum Liouvillean Dynamics
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We discuss a combination of unitary and antiunitary symmetry of quantum Liouvillean dynamics, in the

context of open quantum systems, which implies a D2 symmetry of the complex Liouvillean spectrum.

For sufficiently weak system-bath coupling, it implies a uniform decay rate for all coherences, i.e., off-

diagonal elements of the system’s density matrix taken in the eigenbasis of the Hamiltonian. As an

example, we discuss symmetrically boundary driven open XXZ spin 1=2 chains.
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Introduction.—The so-called PT symmetry, a product of
a unitary and an antiunitary transformation both of which
square to identity, of non-Hermitian Hamiltonians has been
introduced by Bender [1] to study the spectral theory of
Schrödinger-like operators and nonstandard formulations
of quantum mechanics. The generic possibilities [1–6] of
having non-Hermitian operators with purely real spectra
have recently found impressive experimental applications
in nonlinear optics [7,8] and even in LRC electric circuits
[9] where PT symmetry is achieved by a subtle combination
of active elements, with the gain and the loss distributed in a
symmetric way.

In this Letter, we show that the concept of PT symmetry
can be introduced, in contrast to Ref. [1], in the context of
standard, orthodox quantum mechanics when one consid-
ers open, dissipative systems. We discuss a general situ-
ation in which a Liouvillean superoperator possesses a
combination of unitary and antiunitary master symmetries
(transformations in the linear space of generators of
Hermiticity preserving dynamical semigroups). We show
that, as a consequence of master symmetry, the spectrum of
decay rates should have a dihedral (D2) symmetry in the
complex plane. Furthermore, for sufficiently weak system-
bath coupling the spectrum has the shape of a cross, with
one leg on the real axis, corresponding to dynamics of
populations (diagonal operators) in the energy eigenbasis,
and the other leg parallel to the imaginary axis, corre-
sponding to the decay of coherences (off-diagonal opera-
tors), remarkably, all with the same asymptotic rate. This
phenomenon offers a fundamentally new way of control-
ling decoherence as one deals with a single damping factor.
Therefore, our general result should be of interest for a
variety of fields which use the methods of open quantum
systems [10], ranging from nonequilibrium statistical me-
chanics, quantum optics, quantum information, and quantum
measurement theory, to condensed matter, high-energy
theory, and quantum cosmology.

As an example, we demonstrate how our symmetry is
realized in the symmetric boundary driven XXZ spin 1=2
chain [11–14] which is described in terms of the standard
Lindblad equation (with a Hermitian Hamiltonian) and the

canonical formalism of Markovian open quantum systems.
We stress that our considerations assume only local-and-
homogeneous-in-time open quantum system’s theory,
without any need for non-Hermitian central system’s
Hamiltonians. Yet, the results we find formally faithfully
generalize the mathematical framework of PT-symmetric
quantum mechanics [1] to a Liouvillean setting.
Quantum dynamics and Liouville space formalism.—Let

us consider a system defined on a finite Hilbert space H
of N states, with a canonical orthonormal basis jji, j ¼
1 . . .N. Let BðH Þ denote the vector space of linear op-
erators overH . N2 basis states ofBðH Þ shall be denoted
by Ej;k ¼ jjihkj, j; k ¼ 1 . . .N. Introducing the Hilbert-

Schmidt inner product (see, e.g., [15]) ð�;�Þ :¼ trð�y�Þ,
BðH Þ becomes a Hilbert space, with fEj;kg being its

orthonormal basis. As arbitrary physical states are ele-
ments of BðH Þ in the sense of density operators, the

generator L̂ of quantum Liouvillean dynamics

d

dt
�ðtÞ ¼ L̂�ðtÞ (1)

can be considered as an element of BðBðH ÞÞ and can be,
say, in a basis fEj;kg, represented by the N2 � N2 matrix.

For general Markovian open quantum systems, the

Liouvillean L̂ can be always cast to the Lindblad form
[10,16,17]

L̂ ¼ �iðadHÞ þ �D̂; ðadHÞ� :¼ ½H;��;
D̂� :¼ X

m

2Lm�L
y
m � Ly

mLm�� �Ly
mLm; (2)

separating the unitary part generated by a Hermitian

Hamiltonian H 2 BðH Þ, and the dissipator D̂ 2
BðBðH ÞÞ, where fLm;m ¼ 1 . . .Mg � BðH Þ is a set of
M � N2 � 1 Lindblad operators, which together with the
system-bath coupling strength � > 0 contain all informa-
tion that is left about the reservoirs (i.e., environment
degrees of freedom) and coupling to them. One can
always adjust � such as to fix the trace of the dissipator

TrD̂ ¼ P
j;kðEj;k; D̂Ej;kÞ ¼ �Tr1̂ ¼ �N2. We note that
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the abstract part of our discussion will not require a

particular Lindblad form (2) of the Liouvillean L̂, but we
require only the existence of the following concepts.

Liouvillean P transformation.—Let P̂ 2 BðBðH ÞÞ be
some unitary transformation, ðP̂�; P̂�Þ ¼ ð�; �Þ,
8 �; � 2 BðH Þ, squaring to identity P̂ 2 ¼ 1̂. Noting

that P̂�1 ¼ P̂ , we define P transformation of the
Liouvillean as

P L̂ :¼ P̂ L̂ P̂ : (3)

Liouvillean T transformation.—The Hilbert-Schmidt in-
ner product completely defines the Hermitian adjoint of the

Liouvillean L̂y
, namely, ð�; L̂y�Þ ¼ ðL̂�;�Þ ¼ ð�; L̂�Þ,

8 �; � 2 BðH Þ. We define the T transformation as

T L̂ :¼ L̂y: (4)

Note that the maps P and T can be considered as elements
of BðBðBðH ÞÞÞ. By introducing the super-Hilbert-

Schmidt inner product in BðBðH ÞÞ, ððX̂; ŶÞÞ :¼
TrðX̂yŶÞ, it can be verified straightforwardly that the
map P is unitary, while the map T is antiunitary, namely,

ððPX̂;PŶÞÞ ¼ ððX̂; ŶÞÞ; (5)

ððTX̂;TŶÞÞ ¼ ððŶ; X̂ÞÞ; 8 X̂; Ŷ 2 BðBðH ÞÞ:
(6)

PT-symmetric Liouvillean.—Let L̂0
denote the traceless

part of the Liouvillean, defined as

L̂ ¼ L̂0 � �1̂; with � :¼ �TrL̂=Tr1̂: (7)

We shall define quantum Liouvillean dynamics as
PT-symmetric if the following key identity holds:

PTL̂0 ¼ �L̂0; (8)

or, equivalently, ðL̂0Þy ¼ �P̂ L̂0P̂ . ThisPT symmetry can
be immediately applied to invert the Liouvillean propaga-

tor of generally dissipative dynamics ÛðtÞ :¼ expðtL̂Þ:
Ûð�tÞ ¼ e2�tP̂ ½ÛðtÞ�yP̂ : (9)

Now we are in position to show the following result.
Theorem.—The spectrum of PT-symmetric Liouvillean

(8) has a dihedral group (D2) symmetry in the complex
plane, with the lines of symmetry ‘v ¼ ��þ iR and
‘h ¼ R. More specifically, writing the Liouvillean spectral
decompositions

L̂u� ¼ ��u�; L̂yv� ¼ ���v� (10)

with right and left eigenvectors which can be chosen
bi-orthonormal, ðu�; v�Þ ¼ ��;�, we state that for each

eigenvalue of L̂0
, �0

����þ�, there exist the eigenvalues
�0
� ¼ � ��0

� (image across ‘v) and �0
� ¼ ��0

� (image across

‘h) with the right and left eigenvectors related via

u� ¼ P̂v�; v� ¼ P̂u�; (11)

u� ¼ uy�; v� ¼ vy
�: (12)

In the case of a degenerate eigenvalue ��, the eigenvectors
u�=� and v�=� are to be understood as appropriate mem-

bers of the right and left eigenspaces, respectively.
Proof.—The ‘v-reflection spectral symmetry with (11) is

a direct consequence of PT symmetry (8), after applying
it to the left-hand sides of Eqs. (10) and multiplying the

resulting equation by P̂ . The ‘h-reflection symmetry with
(12), on the other hand, is an immediate consequence of
Hermiticity preservation of Liouvillean quantum dynamics,

L̂ð�yÞ ¼ ðL̂�Þy, which clearly holds for the Lindbladian
(2) but also for any other (possibly non-Markovian) mean-
ingful quantum dynamics [17]. j
Remarks.—One of the most interesting objects of open

quantum dynamics is the steady state �ðt ! 1Þ ¼ u1,
corresponding to eigenvalue �1 ¼ 0, which always exists,
due to trace preservation in H , which can be expressed

as L̂yv1 ¼ 0 with v1 ¼ 1 ¼ PN
j¼1 jjihjj. This means that

Eq. (11) yields already a nontrivial result, namely, that the

fastest decaying mode �N2 ¼ �2� is uN2 ¼ P̂ ð1Þ.
Even more remarkable observation is that for suffi-

ciently small coupling �, say, below some critical value
�< �PT, the spectrum of decay modes lies strictly on the
cross, f��g � ‘v [ ‘h. First, we show that if an eigenvalue
��ð�Þ lies on the real line ‘h, it remains on ‘h as long as the
eigenvalue is isolated. First-order nondegenerate perturba-

tion theory tells us that d��=d� ¼ ðv�; D̂u�Þ, whence

Hermiticity conservation D̂ðu�Þy ¼ D̂ðuy�Þ, and uy� ¼
u�, v

y
� ¼ v� following from (12) since ��� ¼ ��, implies

d ���=d� ¼ d��=d� 2 R. Second, we show similarly that
for an isolated eigenvalue ��ð�Þ initially on ‘v, i.e., �

0
� 2

iR, we have d�0
�=d� 2 iR as a simple consequence of the

PT symmetry of the traceless part of the dissipator D̂0 ¼
D̂þ 1̂,PTD̂0 ¼ �D̂0

. Namely, from ��0
� ¼ ��0

� and (11)

follows that u� ¼ P̂v�, so d ��0
�=d�¼ðD̂0u�;v�Þ¼

�ðu�;P̂ D̂0P̂v�Þ¼�ðv�;D̂
0u�Þ¼�d�0

�=d�. The spec-
trum can then leave the cross ‘v [ ‘h, when at some
� ¼ �PT a pair of eigenvalues collides and shoots off
into the complex plane. By observing just the motion of
the spectral points on the vertical leg ‘v (while the argu-
ment should be quite similar for ‘h), the critical coupling
strength where the PT symmetry of the spectrum is spon-
taneously broken can be estimated heuristically as

�PT � kD̂0k�1d�2: (13)

Here kD̂0k is the operator norm of the dissipator which
estimates the maximal velocities jd��=d�j and d denotes a
typical density of states ofH, d2 giving a typical density of
energy differences 	j � 	k.

What remains to be shown to prove this picture is that
initially, for (infinitesimally) small �, the eigenvalues �0

�
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indeed start on R [ iR. This is again easy to demonstrate,
working in the eigenbasis of the Hamiltonian H, Hjc ji ¼
	jjc ji, j ¼ 1 . . .N. For � ¼ 0, �0

� ¼ ið	j � 	kÞ, where �
now labels all N2 pairs of j, k. Let us assume that the
energy spectrum 	j is nondegenerate; i.e., all 	j are differ-

ent. Then we have exactly N diagonal eigenoperators
dj ¼ jc jihc jj � u� ¼ v� for which �0

� ¼ 0. In order to

understand their motion as we switch on �, we have to
solve the first-order-degenerate-perturbation problem;

i.e., we have to diagonalize an N � N matrix Vj;k :¼
ðdj; D̂0dkÞ, Va� ¼ 
�a�, where each eigenvalue 
� deter-

mines the motion of some �0
�, d�

0
�=d�j�¼0 ¼ 
�, and the

corresponding eigenvector determines the hybridization,
u� ¼ v� ¼ P

a�;jdj. The key observation now is that

the matrix V is real and symmetric:

Vj;k ¼ ðdj; D̂0dkÞ ¼ hc jjD̂0ðjc kihc kjÞjc ji
¼ 1þX

m

ð2jhc jjLmjc kij2 � hc jjLy
mLmjc ji

� hc kjLy
mLmjc kiÞ

¼ Vk;j ¼ �Vk;j; (14)

proving that these N eigenvalues �0
�ð�Þ remain on the real

line. Asymptotically, for small � the states u�ð�Þ are
diagonal and correspond to populations in the energy
eigenbasis. The other N2�N eigenvalues �0

�ð�Þ, for
	j�	k, move on the imaginary line, as shown in the

previous paragraph, provided that they are isolated initially
for �¼0, i.e., provided that all the energy spacings 	j � 	k
are different (nondegenerate). These eigenvalues, asymp-
totically for small �, correspond to off-diagonal opera-
tors—coherences—in the energy eigenbasis, and all decay
with exactly the same rate Re�� � ��. This is remarkable
and should have experimentally observable consequences;
e.g., one should be able to control the decoherence in such a
system by handling a single damping factor e��t.

The above scenario which predicts the full Liouvillean
spectrum of decay modes to belong to the cross ‘v [ ‘h for
some nonempty coupling strength interval 0 � � � �PT is
strictly justified only if the two conditions are met, namely,
that both the energy spectrum f	jg and the energy differ-

ence spectrum f	j � 	k; j � kg are nondegenerate. In the

nongeneric case when we have a degeneracy in either of
the two, it can happen (in the absence of additional selec-
tion rules) that already infinitesimal dissipation � moves
the corresponding Liouvillean eigenvalues out into the
complex plane, so the spontaneousPT-symmetry breaking
of the Liouvillean spectrum may then occur already for a
vanishing perturbation �PT ¼ 0.

Example.—We close by demonstrating our constructions
in an interesting example; namely, we consider an open
XXZ chain of n spins 1=2 with the Hamiltonian

H ¼ Xn�1

j¼1

ð2�þ
j �

�
jþ1 þ 2��

j �
þ
jþ1 þ ��z

j�
z
jþ1Þ; (15)

where ��
j ¼ 1

2 ð�x
j � i�

y
j Þ; �z

j, j ¼ 1 . . . n, are Pauli opera-

tors on a product space H ¼ ðC2Þ	n, with symmetric
Lindblad driving acting on the edges of the chain only:

L1;2 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1��

p
��

1 ; L3;4 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
�

p
��

n ; (16)

with M ¼ 4, where � 2 ½�1; 1� is a driving parameter
determining the magnetization bias between the left and
the right baths. We have here N ¼ 2n. This model has been
intensively studied recently [11–14,18], and it has been
shown to admit exact solutions [14] in the limiting cases of
small � or � ¼ 1 and can exhibit diffusive spin transport
(for j�j> 1) in the linear response regime [13], of small�
and nonsmall �� 1. In order to disclose explicitly the PT
symmetry of such a symmetrically boundary driven XXZ
chain, it is instructive to identify the operator spaceBðH Þ
with the tensor product H 	H , via the isomorphism

jc ih�j $ jc i 	 Sj�i; (17)

where S :¼ Q
n
j¼1 �

x
j is a global spin-flip operation in �z

j

eigenbasis. Then the Liouvillean is represented as

L̂$1	
�
iH���

4
ð�z

1��z
nÞ
�
�
�
iH���

4
ð�z

1��z
nÞ
�
	

1þ�ð1þ�Þ
2

ð�þ
1 	��

1 þ��
n 	�þ

n Þþ�ð1��Þ
2

�ð��
1 	�þ

1 þ�þ
n 	��

n Þ��1	1: (18)

Let us define the parity transformation P̂ , such that it
corresponds to the following operator:

P̂ $
�
R
Yn
j¼1

�z
j

�
	 R; (19)

where R is a reflection permutation which reverses
the order of sites j $ nþ 1� j; i.e., in the common
eigenbasis of �z

j, j ¼ 1 . . . n, it reads R ¼P
m1...mn2fþ1;�1gjmn . . .m1ihm1 . . .mnj. It takes a straight-

forward calculation to show that indeed P̂ 2 ¼ 1̂ $ 1 	 1,
and ðL̂þ �1̂Þy ¼ �P̂ ðL̂þ �1̂ÞP̂ . In fact, the PT sym-
metry (8) holds for each of the three rows of the expression
(18) separately. In Fig. 1, we show three different
Liouvillean spectra for different values of the coupling
constant, before and after the transition � ¼ �PT.
Numerical experiments indicate that the critical value in
the leading order decays exponentially with the chain
length, �PT / d�2 / 4�n, as estimated in (13). We note
that, even for � � �PT, a substantial fraction of spectral
points remain on the line ‘v ¼ ��þ iR; hence, a signifi-
cant spectral weight for uniform relaxation e��t is expected
for typical (off-diagonal) observables. Remarkably, an im-
portant operator in the transport theory, the spin current
operator J ¼ i

P
n�1
j¼1 ð�þ

j �
�
jþ1 � ��

j �
þ
jþ1Þ, has vanishing

diagonal matrix elements in the energy eigenbasis, so its
expectation value decays with a uniform rate jtr½�ðtÞJ�j �
e��t, for �< �PT.
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Discussion.—We outlined a general framework for
analysis of a combined unitary (P) and antiunitary (T)
master symmetry of the most general types of quantum
master equations which are local in time. We stress that our
analysis remains strictly in the framework of canonical
quantum mechanics, so we need no active elements or
non-Hermitian system’s Hamiltonians for our construc-
tions. PT symmetry of dissipative Liouvillean dynamics
can thus occur only with respect to a shift parallel to the
imaginary line which represents an average damping rate.
In the asymptotic regime of weak system-bath coupling,
the Liouvillean spectrum can be strictly separated with
the coherences—the off-diagonal matrix elements of the
state—in the energy eigenbasis decaying with a strictly
uniform rate. We discussed a simple explicit example of

PT-symmetric Liouvillean dynamics in open XXZ spin
chains, but other interesting and experimentally accessible
realizations are possible. For example, the recently studied
symmetrically driven Fermi Hubbard chain [12,19] is
PT-symmetric as well (as can be easily seen in spin-ladder
formulation), but applications to driven open bosonic cold
atom systems should also be possible.
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FIG. 1 (color online). The Liouvillean spectrum f�kg for an
open XXZ chain with � ¼ 1=2, n ¼ 4, maximum driving
� ¼ 1, and � ¼ 0:02< �PT (top), � ¼ 0:2> �PT (middle),
and � ¼ 2> �PT (bottom). Note the dihedral symmetry of the
spectrum with the horizontal and vertical symmetry lines, ‘h ¼
R and ‘v ¼ ��þ iR, respectively. Because the XXZ chain has
a global conservation law Mz ¼ P

j�
z
j, we consider only the

most relevant sector with zero total magnetization Mz ¼ 0.
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