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We show that the influence of thermal noise, simulated by a 2D ferromagnetic Ising spin lattice on a

pair of noninteracting, initially entangled qubits, represented by quantum spins, leads to unexpected

evolution of quantum correlations. The high temperature noise leads to ultraslow decay of the quantum

correlations. Decreasing the noise temperature we observe a decrease of the characteristic decay time

scale. When the noise originates from a critical state, a revival of the quantum correlations is observed.

This revival becomes oscillatory with a slowly decaying amplitude when the temperature is decreased

below the critical region, leading to persistence of the quantum correlations.
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Introduction.—The control of the decay of quantum
correlations in simple systems under the influence of ex-
ternal noise is of great importance for the development of
quantum information processing devices [1–6]. A proto-
type open system allowing for analytic description and
deeper understanding of the environmental influence, con-
sists of two noninteracting qubits exposed in a classical
stochastic field. The evolution of the density matrix and the
entanglement in such a system have already been studied
extensively in [7–15] under the assumptions of pure
Markovian [7,8,10,12,13], Ornstein-Uhlenbeck [11], and
random telegraph noise [15] for the representation of the
stochastic environment. In the two-qubit system, despite its
simplicity, very interesting phenomena like entanglement
sudden death (ESD) [9–11,15] and entanglement rebirth
(ER) [15] have been observed. These are fundamental
processes characterizing the response of a quantum system
to its environment.

In experimental conditions an entangled system may be
exposed to vacuum noise, phase noise, thermal noise, and
various classical noises, as well as mixed combinations of
noises. In general these noises are non-Markovian and
there is no way to define their properties from first prin-
ciples. In the present Letter, we will make a step in this
direction. Wewill consider a two-qubit system, represented
by quantum spins, coupled to a noise originating from an
environment at thermal equilibrium. To achieve this we
will form a canonical ensemble of effective magnetic fields
generated by the magnetization of 2D classical ferromag-
netic Ising spins at fixed temperature. The magnetic field
ensemble is equivalent to a stochastic process representing
an external noise applied to the two entangled, noninter-
acting qubits. Depending on the value of the environment
temperature, we observe a large variability in the response
of the qubit system to the thermal noise. In particular, two
unexpected phenomena occur: (i) the ultraslow decay of
concurrence for noises originating from a hot environment
and (ii) the oscillatory revival of entanglement (OER)
when the temperature of the environment generating the

noise is decreased below the critical temperature of the 2D
Ising model. Our analysis opens up the perspective of using
temperature as a tool to control the decay of quantum
correlations in quantum information devices.
Phase noise.—We explore the decay of quantum corre-

lations in a system of two qubits (labeled 1 and 2) interact-
ing with an external stochastic magnetic field BðtÞ which
possesses thermal fluctuations. One possibility to generate
such a field is to consider the following Hamiltonian,
describing a composite system consisting of the two qubits
and a thermal magnetic environment:

H ¼ HS þHE þHI; HS ¼ � 1

4
g�z;1 � �z;2;

HE ¼ HIs½I1 � I2�; HIs ¼ �J
X
hi;ji

sisj;

HI ¼ � 1

2
�

�XN2

i¼1

si

�
½�z;1 � I2 þ I1 � �z;2�; (1)

where HS is the two-qubit interaction term, HE is the
Hamiltonian of the thermal environment, HIs is the ferro-
magnetic (J > 0) 2-D Ising Hamiltonian and HI describes
the interaction of the two qubits with the Ising lattice (we
set @ ¼ 1). In Eq. (1)�z is the Pauli matrix while inHIs the
sum is over pairs of adjacent spins, each pair counted once.
Finally, si are dichotomous variables representing the clas-
sical spins of the Ising lattice (si ¼ �1, i ¼ 1; 2; . . . ) and
I1, I2 are the identity matrices in the space of spins 1 and 2.
Assuming that g � J, we neglect the interaction between
the qubits. Furthermore, we assume that each qubit inter-
acts with a N � N subset of classical spins of the periodic
lattice consisting its environment. In practice such a situ-
ation can be realized when the qubits, being in an appro-
priate distance from the lattice, couple to a large subset of
Ising spins. Summing up over the classical spin variables si
one obtains the reduced qubit-spin bath interaction
Hamiltonian HI;eff:
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HI;eff ¼ 1

Z

X
fsmg

e��HIsHI½fsig�; (2)

where fsmg denotes the set of all possible classical spin
configurations and Z ¼ P

fsmge
��HIs is the partition func-

tion of the 2-D Ising model, � being the inverse tempera-
ture. Equation (2) defines an effective external magnetic

field Beff ¼ 1
Z

P
fsige

��HIsðPN2

k¼1 skÞ, representing the influ-

ence of the equilibrated Ising lattice on the two qubits. It is
useful to express Beff as

Beff ¼
Z
�B

dBB�ðBÞ;

�ðBÞ ¼ 1

Z

X
fsig

e��HIs�

�
B� XN2

k¼1

sk

�
; (3)

defining a probability density �ðBÞ for the external field
felt by the two qubits (�B is the set of all possible B
values). Time dependence can now be introduced by
assuming that the density �ðBÞ is generated by an ergodic
stochastic process BðtÞ.

Then Beff ¼ limT!1 1
T

R
T
0 dtBðtÞ together with Eq. (2)

and the definition of Beff lead to a time dependent
Hamiltonian for the interaction of the qubits with the
spin environment

HIðtÞ ¼ �1
2�BðtÞ½�z;1 � I2 þ I1 � �z;2�; (4)

with HI;eff ¼ limT!1 1
T

R
T
0 dtHIðtÞ. The stochastic process

BðtÞ can be simulated by an ensemble of random trajecto-
ries fBðtÞg which build up the density �ðBÞ. Thus, Eq. (4)
together with the ensemble fBðtÞg introduce time evolution
in the two-qubit system compatible with the presence of
thermal equilibrium in their spin environment. To generate
the ensemble fBðtÞg we apply an ergodic simulation algo-
rithm (here Metropolis) for the production of thermal
equilibrium configurations fsmg of the Ising spins at a fixed
temperature T. We record configurations only after a long
transient necessary to approach equilibrium. For each con-
figuration, indexed by k, we calculate the effective mag-

netic field BðkÞ using BðkÞ ¼ P
N2

i¼1 s
ðkÞ
i . The time ordering of

the BðkÞ values is dictated by the sequence of the Monte
Carlo steps (MCs). Since we consider exclusively equilib-
rium dynamics, our results are insensitive to the choice of

the time unit. For example, recording the BðkÞ values in
each Monte Carlo step (�t ¼ 1 MCs) or recording them
every fifth Monte Carlo step (�t ¼ 5 MCs) leads to ex-
actly the same results for the time dependence of quantum
correlations in the two-qubit system. However, it is crucial
that the time unit used to measure time evolution is inde-
pendent of the temperature.

Evolution of the density matrix and the concurrence.—
The time-dependent density matrix for the two-qubit sys-
tem described by the Hamiltonian (4) is obtained by the
unitary evolution of the initial density matrix (at t ¼ 0)

after taking ensemble average over the noise field BðtÞ
[8,12].
This standard procedure leads to (see in [16] for details):

�ðtÞ¼

�11 Gð�Þ�12 Gð�Þ�13 Gð2�Þ�14

G�ð�Þ�21 �22 0 Gð�Þ�24

G�ð�Þ�31 0 �33 Gð�Þ�34

G�ð2�Þ�41 G�ð�Þ�42 G�ð�Þ�43 �44

0
BBBBB@

1
CCCCCA;

(5)

where �ij � �ijð0Þ and Gð�Þ � Gð�; tÞ is the character-

istic function of the stochastic process defined by �ðtÞ �R
t
0 Bðt0Þdt0. We also set �23ð0Þ ¼ 0 in order to allow for

complete decoherence and disentanglement in the density
matrix under a global stochastic field BðtÞ.
We identify two characteristic decoherence functions

that determine the two time scales of the process: (1) the

robust decoherence function �R ¼ jGð�; tÞj � j �12ðtÞ
�12

j and
(2) the fragile decoherence function �F ¼ jGð2�; tÞj �
j �14ðtÞ

�14
j.

As a quantitative measure of the entanglement rate we
use the concurrence function [17] (normalized by its value
at t ¼ 0):

�Ent ¼ Cð�ðtÞÞ � max

�
0;

ffiffiffiffiffiffi
�1

p �X4
i¼2

ffiffiffiffiffi
�i

p �
;

where �i are the eigenvalues of

�~� ¼ �ð�A
y � �B

y Þ��ð�A
y � �B

y Þ
in descending order. According to the above definitions it
holds: 0 	 �R, �F, �Ent 	 1. When �R, �F, �Ent ¼ 0 the
two-qubit system has become completely decoherent or
disentangled [16].
Numerical results.—We evaluate the quantities �R, �F,

�Ent at 40 equidistant time-instants. In our simulations we
set � ¼ 1. For the generation of the magnetic field
time-series we have used a 2D Ising 60� 60 lattice with
periodic boundary conditions. In order to reduce the pa-
rameters in our analysis, we have also set N ¼ 60 for the
subset of the N � N spins which are coupled with the
qubits. For this lattice, the maximum value of the magnetic
field is Bmax ¼ 3600 J. The ‘‘critical’’ temperature of such
a system is close to Tc ffi 2:3 J

kB
or �J ffi 0:434. Since the

Ising lattice is equilibrated, there is no relaxation and,
therefore, a characteristic time scale in the system.
However, for the numerical integration of the stochastic
magnetic field, we have to assign a value to the time
interval �t between successive MCs. To achieve this, we
first define a time scale by demanding that 1

2�Bmaxtf ¼ 1

[18]. Then we set �t ¼ tf
M where M is the length of a

random trajectory BðtiÞ (i ¼ 1; . . . ;M) in terms of MCs.
To construct the ensemble fBðtÞg at a given temperature we
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use exclusively trajectories of the same length. After con-
structing the ensembles we calculate the evolution of the
density matrix and the concurrence function for different
temperatures. Then we repeat the calculation by increasing
the number M of MCs per trajectory (smaller �t). We
continue this procedure until we obtain results which do
not change by a further increase of M. We use as �t the
value which corresponds to the smallestM value necessary
to achieve convergence of the calculated observables. It
turns out that M ¼ 500 (�t � 10�6) is sufficient for that
purpose. The Monte Carlo steps for a single BðtÞ time
series are realized by the Metropolis algorithm, whereas
to get statistically independent configurations [new BðtÞ
time series] for the ensemble fBðtÞg we make use of the
Wolff algorithm [19]. The completeness of the ensemble
used to simulate the thermal environment is tested through
the calculation of the distribution of the magnetization

(M ¼ PN2

i¼1 si) at the corresponding temperature which

by definition coincides with �ðBÞ. Namely, we increase
the number of ensemble configurations until a convergence
of the magnetization density is achieved. It turns out that
10000 configurations for each temperature are enough to
converge. Our initial density is picked up randomly and has
the form

�ð0Þ ¼

0:2546 0:1745 0:0481 0:1751

0:1745 0:3504 0 0:0680

0:0481 0 0:0243 0:0855

0:1751 0:0680 0:0855 0:3708

0
BBBBB@

1
CCCCCA: (6)

In Figs. 1(a)–1(e), we present the plot of �RðtÞ, �FðtÞ, and
�EntðtÞ for noises originating from the 2D Ising lattice at
five different temperatures. For the high temperature noise
(�J ¼ 0:01), we observe an exceptionally slow decrease of
all three quantities, i.e., an ultraslow decoherence process.
The entanglement decay rate is faster than the fragile
decoherence rate which is bounded above by the robust
one, as expected. As we approach the critical region from
the high temperature regime we observe a faster decay of
all three quantities [see Fig. 1(b)]. At t � 1:5� 10�3 [18],
we observe the appearance of ESD. However, the ordering
of the decay rates remains the same as in Fig. 1(a). In
Fig. 1(c) we show the results for a temperature within the
critical region. The decay rates are even faster and the ESD
appears earlier. We also observe a decoherence ‘‘death’’
and a subsequent partial ‘‘rebirth’’ for both fragile and
robust decoherence functions. In Fig. 1(d) we use a tem-
perature just below the critical region. Here, the decay rates
are even larger for all three quantities. However, we
observe repetitive occurrence of decoherence death and
subsequent revival for the fragile decoherence function.
As a consequence, there exists a time interval for which the
fragile decoherence rate is smaller than that of the robust
one contrary to expectations. This effect becomes more
spectacular in the case of noise corresponding to even

lower temperatures as demonstrated in Fig. 1(e). Here we
observe OER in addition to the periodic decoherence
rebirth for the fragile and robust decoherence functions.
Notice that the frequency of the periodic fragile decoher-
ence rebirth is approximately twice the corresponding
robust one. It is worth noticing that a remarkable property
induced by OER is the occasional existence of time inter-
vals for which the disentanglement rate is slower than one
of the two decoherence rates.
Amplitude noise.—We consider two similar stochastic

local fields B1ðtÞ, B2ðtÞ acting as an amplitude noise on the
qubits �z;1 and �z;2; respectively. We assume that both

fields are effectively generated by the spins of a N � N
2D Ising lattice at fixed temperature with periodic bound-
ary conditions in the manner described previously. For
each temperature value, we generate two different effective
magnetic field ensembles fB1ðtÞg and fB2ðtÞg performing
two independent simulations starting in each case from a
different initial configuration of the lattice spins. In such a
system the time evolution of the density matrix is deter-
mined by the Kraus operators given in [20]. These opera-
tors can be parametrized in terms of the function pðtÞ (the
analogue of the characteristic function Gð�; tÞ for the
phase noise) defined through

dpðtÞ
dt

¼ �
Z t

0
d�fðt� �Þpð�Þ; (7)

where fð�Þ ¼ hB1ðtþ �ÞB1ðtÞi ¼ hB2ðtþ �ÞB2ðtÞi the
noise correlation function. Solving numerically Eq. (7)
and inserting the result in the expression of the Kraus
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FIG. 1 (color online). (a)–(e) The functions �RðtÞ (blue circles
and line), �FðtÞ (red circles and line), and �EntðtÞ (green line) for
five different inverse temperature values: (a) �J ¼ 0:01,
(b) �J ¼ 0:41, (c) �J ¼ 0:436, (d) �J ¼ 0:443, and
(e) �J ¼ 0:465. (f)–(j) The corresponding distributions pð�Þ
of �ðt1Þ used in the calculation of the decoherence and
disentanglement functions (a)–(e) for two different times: t1 ¼
4� 10�6 (black histogram), t1 ¼ 2� 10�5 (red histogram).
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operators [20], we obtain for the evolution of the initial
density matrix �ð0Þ (6) the results shown in Fig. 2.

Similarly to the phase noise case, we observe slow decay
at high temperature, sudden death at critical temperature,
and OER at low temperature noises. One major difference,
typical for amplitude noise [9,10,20], is that some deco-
herence functions [e.g., �34ðtÞ] obtain values greater than 1.

Discussion and concluding remarks.—It is evident that
the characteristic functionGð�; tÞ of the stochastic process
�ðtÞ (determining the decoherence and disentanglement
functions in the case of phase noise) tends to zero more
rapidly with the increase of the variance of the associated
probability density function [8,12,16].

At high temperatures, the distribution of the effective
magnetic field felt by the two qubits tends to a very skew
Gaussian with a small variance and zero mean, since it is
generated by the average magnetization over a macro-
scopic domain of the Ising lattice. The variance grows
with the decrease of temperature. This is the reason why
contrary to our intuition for high temperature noise there is
a very slow decrease of the decoherence and disentangle-
ment functions which fastens with the decrease of noise
temperature. At the critical region and below we can obtain
the ESD phenomenon and a gradual revival of the deco-
herence functions which finally leads us to an oscillatory
entanglement rebirth at low temperatures. This phenome-
non is attributed to the presence of two maxima in
the magnetization distribution due to the spontaneous
symmetry breaking of the Zð2Þ symmetry [Fig. 1(j)].

Approximating this distribution with a sum of two
Gaussians with opposite mean values and the same vari-
ance, we obtain through Fourier transform an oscillatory
characteristic function [16]. Note that at this temperature
(�J ¼ 0:465), the two parts of the probability function are
still connected. At lower temperatures, close to T ¼ 0, the
two parts disconnect and the magnetic field values are
distributed only around one of the two maxima. Then the
noise distribution is described by a single Gaussian with a
tiny variance. Thus, we will obtain results similar to those
of high temperatures [Fig. 1(a)] with even slower decay of
the correlation functions.
It is remarkable that the classical (noise) correlation

functions Figs. 2(f)–2(j) present a quite opposite time
dependence, decaying very fast at high temperatures and
very slow at low temperatures. These correlation functions
can be used in order to explain the effect of the amplitude
noise. At high temperatures the correlation function has a
relatively small magnitude [Fig. 2(f)] and from Eq. (7) we
obtain that pðtÞ (and consequently also the decoherence
and disentanglement functions) is almost constant. On the
contrary, the correlations at low temperatures are almost
constant [Fig. 2(j)] and thus from (7) we obtain an oscil-
latory behaviour for pðtÞ.
The presented analysis uses exclusively concurrence to

quantify entanglement decay. Currently there is increasing
interest for quantum correlations beyond entanglement. An
appropriate measure of these correlations is quantum dis-
cord [21]. A handy scheme for its calculation, within a
class of two-qubit states, is proposed in [22] and it can be
directly applied to the system considered here. Preliminary
results indicate that the decay of quantum discord depends
strongly on the temperature of the thermal environment
displaying similar behaviour with the concurrence [16].
However, a more detailed discussion of this subject goes
beyond the aim of the present Letter.
In conclusion, we have shown that thermal noise influ-

ences significantly the decoherence and disentanglement
processes in a two-qubit system. The large variability in the
time dependence of the associated decay functions by
changing the noise temperature has universal character-
istics, suggesting that thermal noise can be a useful tool to
control the evolution of quantum correlations in open
quantum systems.
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