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Boolean networks, widely used to model gene regulation, exhibit a phase transition between regimes in

which small perturbations either die out or grow exponentially. We show and numerically verify that this

phase transition in the dynamics can be mapped onto a static percolation problem which predicts the long-

time average Hamming distance between perturbed and unperturbed orbits.
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Boolean networks have been a prominent tool for mod-
eling gene regulation since their introduction by Kauffman
in 1969 [1,2]. In a Boolean network, each node is assigned
a state, 0 or 1, which is synchronously updated at discrete
time steps according to a preassigned update function
which depends on the states of that node’s inputs on the
previous time step. When used to model gene regulatory
networks, each node represents a gene, and the state of the
node indicates whether or not the gene is being expressed.
Kauffman’s original considered random networks and up-
date functions in which each of the N nodes has K input
links from randomly chosen nodes (the N-K model).
Kauffman found numerically that when the in-degree K
crosses a critical value, there is a transition between a
stable phase, in which small perturbations die out, to an
unstable phase, in which small perturbations grow and
become macroscopic.

A derivation of the critical in-degree was given by
Derrida and Pomeau for annealed N-K networks [3].
Here, ‘‘annealed’’ means that the network edges and up-
date functions are randomly redrawn between time steps.
They hypothesized that for large networks the stability
properties of the annealed system are similar to those of
the original frozen (nonannealed) system. This hypothesis
is well supported by numerical experiments [3,4], and we
refer to it as the ‘‘annealed approximation.’’ Recent work
[5] has extended this approach by using a partial random-
ization, in which only the update functions (but not the
network topology) are randomly generated at each time
step. In contrast with the annealed approximation, this
‘‘semiannealed’’ approximation describes the dynamics
on a fixed network which may have nontrivial topological
features such as edge assortativity [6], motifs [7], and
community structure [8]. The only necessary assumption
is that the network is locally treelike (it cannot have many
short loops) [9].

Some recent papers have derived stability properties of
Boolean networks without annealing [13,14]. These papers
are complementary to ours in the following sense.
Although rigorous, their results only apply to the ensemble
average of random networks with restrictions on their
network topology and/or update functions. In contrast,

because our results rely on the semiannealed approxima-
tion, they can model the dynamics of a specific network.
Here, using our semiannealed approach, we map the

dynamical problem of stability on a Boolean network
onto the static problem of network percolation in the
N ! 1 limit. Previous authors have discussed the perco-
lation properties of the ‘‘frozen component’’ of N-K net-
works [15–17], and others have used percolation to discuss
the stability of N-K lattices [18,19]. In contrast, we show
that a dynamic quantity, the long-time average Hamming
distance between two initially close trajectories on a
Boolean network, can be mapped onto the size of the giant
out-component in a percolation problem. We will illustrate
this map in three different contexts. First, we consider the
well-known annealed approximation and map it onto per-
colation in the configuration model [11]. Second, we give a
similar map from the semiannealed approximation [5] to
weighted site percolation [10]. Finally, we treat a more
general class of update functions by mapping to a corre-
lated bond percolation problem.
Model.—A Boolean network is a directed network of N

nodes, in which each node i is assigned a state, xiðtÞ ¼ 0 or
xiðtÞ ¼ 1, at each discrete time step t. We denote the in-
and out-degrees of node i by dini and douti and the set of
inputs to node i byJ i. A Boolean function or ‘‘truth table’’
Fi, fixed in time, updates the state of each node i at each
time step t, xiðtÞ ¼ Fiðfxjðt� 1Þ:j 2 J igÞ.
In the literature, the truth tables Fi are usually generated

randomly (e.g., [3]). For each combination of input states
to node i, the value of Fi is assigned to be 1 with proba-
bility p or 0 with probability 1� p, where p is the ‘‘bias
probability.’’ Below, as in [5], we will consider the more
general case where each Fi is generated with a different
bias pi assigned to each node i. Later, we will also consider
the case of ‘‘canalizing’’ functions, in which one input acts
as a master switch for the truth table. That is, input j to
node i is canalizing if there is a state of xj which com-

pletely determines the value of Fi independent of the other
inputs to i. (When xj is not equal to its canalizing value, Fi

depends on the states of its other inputs.) Canalizing
functions are thought to be common in real gene
networks [20,21].
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Consider two trajectories, xðtÞ and ~xðtÞ, which evolve on
the same Boolean network. The initial conditions xð0Þ and
~xð0Þ differ only on a small randomly chosen fraction " of
nodes. We say that a node i is ‘‘damaged’’ at time t if
xiðtÞ � ~xiðtÞ, and our goal is to predict the extent of the
damage at long times. Let yi be the fraction of time that
node i is damaged on an orbit of length T as T ! 1. The
normalized long-time average Hamming distance Y ¼
hyii, 0 � Y � 1, is used as the order parameter for the
stability phase transition. The average h�i is taken over
all nodes i, then over all initial conditions which differ
on a fraction " of the nodes.

Analytic results.—First, we treat the annealed approxi-
mation for random networks [22]. We assume that the truth
tables are randomly generated with a bias which depends
only on degree. Let Pjk be the probability that a node has j

inputs and k outputs, and let the bias of such a node be pjk.

We define the sensitivity [23] to be qjk ¼ 2pjkð1� pjkÞ 2
½0; 1�, which can be interpreted as the probability that a
node with j inputs and k outputs will become damaged at
time t if at least one of its inputs is damaged at time t� 1.

In the annealed approximation, Y can be predicted ana-
lytically using a method derived in [3,24], which can be
explained as follows. Let z denote the average degree of the
network, i.e., z ¼ P

j;kjPjk ¼
P

j;kkPjk, and let E denote

the probability that a randomly selected edge originates
from a damaged node. A randomly selected edge originates
from a node with j inputs and k outputs with probability
kPjk

z , and such a node will become damaged with probabil-

ity qjk if it has at least one damaged input, which occurs

with probability 1� ð1� EÞj. Therefore,

E ¼ X
j;k

kPjk

z
qjk½1� ð1� EÞj�;

Y ¼ X
j;k

Pjkqjk½1� ð1� EÞj�:
(1)

In the stable regime, these equations only have the trivial
solution E ¼ 0 and Y ¼ 0, but there will be a nonzero
solution in the unstable regime [24].

We now show that Eq. (1) can be mapped onto the
generating function formalism for treating weighted site
percolation in directed configuration-model networks, as
developed in [11,25]. In this model, each node is deleted
with some probability which depends only on its degree.
The resulting ensemble of site-deleted networks exhibits a
percolation phase transition, above which there is a macro-
scopic connected component or ‘‘giant component.’’ This
giant component contains a core of mutually path-
connected nodes called the giant strongly connected com-
ponent (GSCC); this, along with all the nodes which can be
reached from it, is called the giant out-component
(GOUT). In our map, we will identify the probability that
a node is not deleted with the sensitivity, writing qjk for the

probability that a node with j inputs and k outputs is

undeleted. With this identification, we will show that Y
maps onto the expected fraction of nodes in GOUT, which
we denote S.
It is shown in [11,25] that S can be found as follows.

First, define generating functions for the in-degrees of

nodes and edges, F0ðwÞ ¼ P
j;kPjkqjkw

j and F1ðwÞ ¼P
j;k

kPjk

z qjkw
j. Next, let u be the probability that a ran-

domly selected edge is not in GOUT. The authors show
through diagrammatic expansion that

u ¼ 1� F1ð1Þ þ F1ðuÞ; S ¼ F0ð1Þ � F0ðuÞ: (2)

We note that the substitutions E ¼ 1� u and Y ¼ S map
Eq. (1) onto Eq. (2). Therefore, the phase transition be-
tween dynamical stability and instability in this ensemble
of random Boolean networks is equivalent to the static
percolation phase transition on the same ensemble.
Our second result is a more general derivation of the

same correspondence, using the framework of [5]. This
framework applies to a specific locally treelike network in
which each node i can have its own arbitrarily chosen bias
pi, with an associated sensitivity qi ¼ 2pið1� piÞ. Again,
we will identify the sensitivity qi with a site nondeletion
probability and map the Hamming distance, Y, onto the
size of GOUT, S. We begin by writing an analogue of
Eq. (1) for a specific node in a semiannealed, locally tree-
like Boolean network,

yi ¼ qi

�
1� Y

j2J i

ð1� yjÞ
�
: (3)

This is the long-time limit of a damage-spreading equation
derived in [5], which noted that i will become damaged
with probability qi if at least one of its inputs is damaged.
The assumption that the network is locally treelike is
necessary because all the probabilities in the product are
treated as independent.
Reference [10] derives a similar condition for site per-

colation on locally treelike directed networks in which the
probability that each node is not deleted is qi. It defines �i

as the fraction of site-deleted networks for which node i is
not in GOUT, and it shows that

�i ¼ 1� qi þ qi
Y
j2J i

�j; (4)

because a node is not in GOUTwhen it is either deleted or
has no inputs from GOUT. We note that substituting yi ¼
1� �i maps Eq. (3) onto Eq. (4). Because Y ¼ hyii and
S ¼ h1� �ii, this map also yields Y ¼ S. For S, the
average h�i is first taken over all nodes i, then over all
node deletion trials.
We now introduce a third case, in which we consider

Boolean networks with canalizing functions. The method
used for our previous results can be extended to canalizing
functions, but because the truth table elements in a canal-
izing function are not generated independently, we need to
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consider a new type of percolation problem which we call
correlated bond percolation. Instead of typical bond perco-
lation, in which each bond is occupied or deleted indepen-
dently, we consider joint probabilities where the deletion
of two bonds may be correlated if they are inputs to the
same node.

Here, we describe a correlated bond percolation problem
that corresponds to a Boolean network whose truth tables
each have one canalizing input but are otherwise generated
randomly. That is, for each node i, there is a canalizing
input ci, and all the rows of the truth table on which xci
assumes its canalizing value have the same constant out-
put, but the outputs of the other rows are randomly gen-
erated with a probability bias pi. To begin, we imagine that
the system is equally likely to be in any of its states. As we
will show, it is then formally possible to obtain equations
describing damage spreading in closed form. Based on our
numerical results, we conjecture that these equations can
be used to predict damage spreading in a large class of
Boolean networks with frozen truth tables.

Working under the supposition that all system states are
equally probable, we now derive an expression for yi. Let
ri denote the ‘‘activity’’ of ci on i [23], defined as the
fraction of states in which i will become damaged if ci
becomes damaged. If ci is not damaged, it may be in either
the canalizing or noncanalizing state, each with probability
1
2 . In the first case, it is impossible for i to become dam-

aged, while the second case is equivalent to Eq. (3).
Therefore,

yi ¼ riyci þ
1

2
qið1� yciÞ

�
1� Y

j2J 0
i

ð1� yjÞ
�
; (5)

where J 0
i ¼ J i � fcig and qi is the sensitivity of the half

of the truth table where xci is not in its canalizing state. It

can be shown that this is equivalent to

�i ¼ 1� ri þ
�
ri � 1

2
qi

�
�ci þ

1

2
qi

Y
j2J i

�j; (6)

where �i ¼ 1� yi. This corresponds to a correlated bond
percolation problem in which one of the following three
things may occur. With probability 1� ri, all edges to i are
deleted; with probability ri � 1

2 qi, all of i’s edges are

deleted except for the edge from ci, and otherwise no input
edges are deleted. Note that it is straightforward to describe
the case where only some of the nodes have a canalizing
input by using Eqs. (5) and (6) for those nodes and Eqs. (3)
and (4) for the others.

Numerical results.—We begin with the map described
by Eqs. (3) and (4), since it is more general than Eqs. (1)
and (2). We compare the long-time average Hamming
distance Y to the size of the giant out-component S for
particular networks. We also compare both Y and S to the
theoretical prediction given by the solution to Eq. (3),
which we denote T.

Our algorithm is as follows. First, we create a
configuration-model network with N ¼ 105 nodes. The
data in the figures were obtained using networks with
Poisson-distributed in-degrees and scale-free out-degrees;
we have also tested other degree distributions and found
similar results. If desired, we then enhance interesting
topological features such as assortativity or feedforward
loops using the same algorithms as in [5]. Next, we assign
each node a bias pi. These may be distributed randomly, or,
if we wish to encourage (impede) instability on the net-
work, we distribute them so that the nodal average
hqidini douti i is maximized (minimized) [5]. For the data in
the figures, the biases pi were distributed randomly so that
the sensitivities qi form a uniform distribution on the
interval [0.3,0.5]. We choose random initial conditions
for x, and a randomly selected fraction " ¼ 0:01 of the
nodes are flipped for the initial conditions of ~x.

FIG. 1 (color online). The ensemble averages of Y, S, and T
(taken over 20 networks) versus the average degree z, for three
families of networks. The three families of networks are assor-
tative (left), neutral (middle), and disassortative (right).

FIG. 2 (color online). Y versus S for individual neutrally
assortative networks.
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To find Y, we time-evolve the system and average
jxiðtÞ � ~xiðtÞj between t ¼ 900 and t ¼ 1000, averaging
over 100 initial conditions. The theoretical prediction is
found by iterating Eq. (3) until it converges to a solution ŷ,
then taking T ¼ hŷii. Finding S is less straightforward,
because a typical percolation problem is only guaranteed
to have a single, well-defined giant out-component in the
N ! 1 limit. For reasons discussed in the Supplemental
Material [26], we choose the following procedure. We
delete each node i with probability 1� qi and find any
strongly connected components (SCCs) in the resulting
network, where we define an SCC to be a mutually path-
connected set of nodes containing at least one loop. We
define S to be the fraction of nodes which can be reached
from at least one SCC, averaged over the ensemble of
deletion trials. We average 103 deletion trials per network.
We find that the numerical uncertainty in our measured
values of T, Y, and S for each point in Figs. 1–4 is smaller
than the point size; see the Supplemental Material for
details [26].

Figure 1 illustrates the relationship between Y, S, and T
for networks generated in this way. We see that Y and S
have the same average values on the ensemble of random
networks with given average degree z. However, in Fig. 2,
we see that the prediction Y ¼ S sometimes fails for
individual networks, especially near the phase transition.
The deviations in Fig. 2 are primarily caused by the
quenched disorder in the truth tables, which may cause
orbits to fall onto attractors which visit only a small
fraction of the state space (and so may deviate from the
semiannealed approximation).

In Fig. 3, we have averaged over this quenched disorder
by choosing truth tables from an ensemble of closely
related frozen truth tables (but not networks) as follows.

Before we time-evolve each new pair of initial conditions,
we perform a set of exchanges on the truth tables. For each
edge j ! i, with probability 1

2 , we exchange xj ¼ 0 and

xj ¼ 1 on the truth table for i. We note that there are two

major differences between this and the semiannealed ap-
proximation. In the latter, the truth tables are changed
during the dynamics, whereas here they are only changed
before each new dynamical trial. Second, whereas the
semiannealed approximation treats all inputs interchange-
ably, this procedure preserves input-specific information
(such as whether an input is canalizing). In Fig. 3, we see
that this procedure yields excellent agreement between Y,
S, and T for individual networks well above the transition.
Near the transition and below it, finite-size effects still
cause S (and, to a lesser extent, Y) to deviate slightly
from the prediction T. These effects are discussed in the
Supplemental Material [26].
In Fig. 4, we perform the same numerical experiment for

the case in which each node has one canalizing input. We
find that Y, S, and T agree for individual networks when we
use the map between Eqs. (5) and (6), but the map between
Eqs. (3) and (4) fails for this case, indicating that we retain
significant input-specific information about the dynamics
when we average over the quenched disorder in the truth
tables.
Discussion.—We have presented evidence that the

stability of a Boolean network can be understood in terms
of a related percolation problem on that network. This
relationship may be helpful in understanding the stability
of systems modeled by Boolean networks, such as gene
regulatory networks and neural networks. Two previously-
studied cases (the annealed and semiannealed approxima-
tions) map onto known results for percolation, and a case
of biological interest (canalizing truth tables) maps onto a
novel percolation problem. These maps are valid for the
typical cases in the literature (large, locally treelike net-
works with random or canalizing truth tables), but have the
advantage of applying to specific networks rather than
ensembles of random networks. Numerical experiments
show excellent agreement with our analysis when averaged
over a family of quenched truth tables.
This work was funded by ONR Grant No. N00014-07-1-

0734 and ARO Grant No. W911NF-12-1-0101.

FIG. 3 (color online). (a) Linear and (b) log-log scatterplots of
Y versus S for data generated in the same way as that of Fig. 2,
except that now we average over the quenched disorder in the
truth tables as described in the text. (c) Linear and (d) log-log
scatterplots of Y and S versus T for the same data, sampling
alternate points for visibility.

FIG. 4 (color online). (a) Linear and (b) log-log scatterplots of
Y versus S for networks in which each node has one canalizing
input, using Eqs. (5) and (6).

PRL 109, 085701 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

24 AUGUST 2012

085701-4



*squires@umd.edu
[1] S. A. Kauffman, J. Theor. Biol. 22, 437 (1969).
[2] H. de Jong, J. Comput. Biol. 9, 67 (2002).
[3] B. Derrida and Y. Pomeau, Europhys. Lett. 1, 45

(1986).
[4] U. Bastolla and G. Parisi, Physica (Amsterdam) 98D, 1

(1996).
[5] A. Pomerance, E. Ott, M. Girvan, and W. Losert, Proc.

Natl. Acad. Sci. U.S.A. 106, 8209 (2009).
[6] S. Maslov and K. Sneppen, Science 296, 910 (2002).
[7] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D.

Chklovskii, and U. Alon, Science 298, 824 (2002).
[8] Q. Cui et al., Mol. Syst. Biol. 3, 152 (2007).
[9] The locally treelike approximation is discussed in detail in

[5,10]. Configuration-model random networks with finite
average degree are locally treelike as N ! 1 [11]. It is
quite common for treelike approximations to give excel-
lent results even when the underlying network has signifi-
cant clustering [12]; this was observed for Boolean
networks in [5].

[10] J. G. Restrepo, E. Ott, and B. R. Hunt, Phys. Rev. Lett.
100, 058701 (2008).

[11] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Phys.
Rev. E 64, 026118 (2001).

[12] S. Melnik, A. Hackett, M.A. Porter, P. J. Mucha, and J. P.
Gleeson, Phys. Rev. E 83, 036112 (2011).

[13] A. Mozeika and D. Saad, Phys. Rev. Lett. 106, 214101
(2011).

[14] C. Seshadhri, Y. Vorobeychik, J. R. Mayo, R. C.
Armstrong, and J. R. Ruthruff, Phys. Rev. Lett. 107,
108701 (2011).

[15] H. Flyvbjerg, J. Phys. A 21, L955 (1988).
[16] T. Mihaljev and B. Drossel, Phys. Rev. E 74, 046101

(2006).
[17] B. Samuelsson and J. E. S. Socolar, Phys. Rev. E 74,

036113 (2006).
[18] A. Hansen, J. Phys. A 21, 2481 (1988).
[19] S. P. Obukhov and D. Stauffer, J. Phys. A 22, 1715 (1989).
[20] S. E. Harris, B. K. Sawhill, A. Wuensche, and S.

Kauffman, Complexity 7, 23 (2002).
[21] S. Kauffman, C. Peterson, B. Samuelsson, and C. Troein,

Proc. Natl. Acad. Sci. U.S.A. 100, 14796 (2003).
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